-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_saved_models.py
39 lines (33 loc) · 1.63 KB
/
load_saved_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os, joblib
directory = "saved_models/"
location_list = ["CYT", "MEM", "NUC", "MIT", "GLG", "ERE", "LYS", "EXC", "PEX"]
def read_threshold_weights():
dict_locs_threshold_weights = dict()
for loc in location_list:
dict_locs_threshold_weights[loc] = dict()
#print(loc)
with open(directory+loc+"_saved_models/"+loc+"_threshold_model_weights.txt", "r") as fp:
for line in fp:
line_list = line.strip().split(":")
if line_list[0].strip() == "Threshold":
threshold = float(line_list[1].strip())
dict_locs_threshold_weights[loc]["threshold"] = threshold
#print(threshold)
else:
weight = float(line_list[1].strip())
line_sep = line_list[0].split("-")
feature_name, norm_method = line_sep[0].strip(), line_sep[1].strip()[0]
dict_locs_threshold_weights[loc][feature_name+"_"+norm_method] = weight
#print(feature_name+"_"+norm_method, weight)
return dict_locs_threshold_weights
def form_dict_saved_models():
dict_loc_feature_norm_models = dict()
for loc in location_list:
dict_loc_feature_norm_models[loc] = dict()
for file_name in os.listdir(directory+loc+"_saved_models/"):
if "threshold" in file_name:
continue
loaded_model = joblib.load(directory+loc+"_saved_models/"+file_name)
feature_norm = file_name.split(".")[0][10:]
dict_loc_feature_norm_models[loc][feature_norm] = loaded_model
return dict_loc_feature_norm_models