-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotsure.idiocracy.is.me.py
42 lines (36 loc) · 1.46 KB
/
notsure.idiocracy.is.me.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from qiskit import QuantumCircuit, QuantumRegister, execute, Aer
import numpy as np
# Define the initial quantum circuit with 2 qubits
def create_initial_circuit(data):
qc = QuantumCircuit(2)
qc.h(0) # Apply Hadamard gate to the first qubit
qc.cx(0, 1) # Apply CNOT gate with control qubit 0 and target qubit 1
# Encode the data into the quantum state
qc.rx(data[0], 0)
qc.rx(data[1], 1)
return qc
# Define the folding operation to increase the number of qubits to 14
def apply_folding_mechanic(qc, num_folds, data):
# Add additional qubits for each fold
for i in range(num_folds):
qc.add_register(QuantumRegister(2, f'q{i+1}'))
# Apply controlled rotation gates to create entanglement
qc.crz(data[2*i+2], 2*i, 2*i+2)
qc.crz(data[2*i+3], 2*i+1, 2*i+3)
# Apply additional gates for demonstration
qc.h(2*i+2)
qc.cx(2*i+2, 2*i+3)
return qc
# Create the initial quantum circuit
data = np.random.rand(52) # Random data for demonstration
initial_qc = create_initial_circuit(data)
# Apply the folding operation to increase the number of qubits to 14
num_folds = 25 # Number of times to apply the folding operation
folded_qc = apply_folding_mechanic(initial_qc, num_folds, data)
# Print the circuit
print(folded_qc)
# Simulate the circuit
simulator = Aer.get_backend('statevector_simulator')
result = execute(folded_qc, simulator).result()
statevector = result.get_statevector()
print(statevector)