-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotsure.version2.py
85 lines (72 loc) · 3.26 KB
/
notsure.version2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from qiskit import QuantumCircuit, QuantumRegister, transpile, assemble, Aer
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise.errors import pauli_error
import numpy as np
# Define the initial quantum circuit with 2 qubits
def create_initial_circuit():
qc = QuantumCircuit(2)
qc.h(0) # Apply Hadamard gate to the first qubit
qc.cx(0, 1) # Apply CNOT gate with control qubit 0 and target qubit 1
return qc
# Define the folding operation to increase the number of qubits to 127
def apply_folding_mechanic(qc, num_folds):
# Add additional qubits for each fold
for i in range(num_folds):
qc.add_register(QuantumRegister(2, f'q{i+1}'))
# Apply controlled rotation gates to create entanglement
qc.crz(0.5, 2*i, 2*i+2)
qc.crz(0.5, 2*i+1, 2*i+3)
# Apply additional gates for demonstration
qc.h(2*i+2)
qc.cx(2*i+2, 2*i+3)
return qc
# Define the noise model
def get_noise_model(prob_1, prob_2):
error_1 = pauli_error([('X', prob_1), ('I', 1 - prob_1)])
error_2 = pauli_error([('XX', prob_2), ('II', 1 - prob_2)])
noise_model = NoiseModel()
noise_model.add_all_qubit_quantum_error(error_1, ['h'])
noise_model.add_all_qubit_quantum_error(error_2, ['cx'])
return noise_model
# Define a noise level adjuster
class NoiseAdjuster:
def __init__(self, min_noise, max_noise, step):
self.min_noise = min_noise
self.max_noise = max_noise
self.step = step
self.noise_level = min_noise
def adjust(self, feedback):
if feedback > 0.1: # If the difference is too large, decrease the noise level
self.noise_level -= self.step
elif feedback < 0.01: # If the difference is small, increase the noise level
self.noise_level += self.step
self.noise_level = np.clip(self.noise_level, self.min_noise, self.max_noise)
return self.noise_level
# Create the initial quantum circuit
initial_qc = create_initial_circuit()
# Apply the folding operation to increase the number of qubits to 127
num_folds = 62 # Number of times to apply the folding operation
folded_qc = apply_folding_mechanic(initial_qc, num_folds)
# Add a simple bit-flip error correction code
for i in range(0, 124, 3): # Adjusted range to avoid IndexError
folded_qc.cx(i, i+1)
folded_qc.cx(i, i+2)
folded_qc.ccx(i+1, i+2, i)
# Simulate the quantum state
simulator = Aer.get_backend('statevector_simulator')
job = simulator.run(transpile(folded_qc, simulator))
statevector = job.result().get_statevector()
# Create a noise adjuster
noise_adjuster = NoiseAdjuster(0, 0.1, 0.01)
# Run the quantum circuit with variable noise levels
noisy_statevectors = []
for _ in range(100): # Run the circuit 100 times
noise_level = noise_adjuster.noise_level
noise_model = get_noise_model(noise_level, 2*noise_level)
job = simulator.run(transpile(folded_qc, simulator), noise_model=noise_model)
noisy_statevector = job.result().get_statevector()
noisy_statevectors.append(noisy_statevector)
# Calculate the difference between the noisy statevector and the ideal statevector
difference = np.linalg.norm(noisy_statevector - statevector)
# Adjust the noise level based on the feedback
noise_adjuster.adjust(difference)