forked from peter-iakovlev/Telegram
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKFEstimator.mm
209 lines (164 loc) · 6.09 KB
/
KFEstimator.mm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
//
// KFEstimator.m
// kalman-ios
//
// Created by Gareth Cross on 12/27/2013.
// Copyright (c) 2013 gareth. All rights reserved.
//
#import "KFEstimator.h"
#include <mach/mach_time.h>
#include "AttitudeESKF.hpp"
#include <deque>
uint64_t getTime_ns()
{
static mach_timebase_info_data_t s_timebase_info;
// get the time scale
if (s_timebase_info.denom == 0) {
mach_timebase_info(&s_timebase_info);
}
return ((mach_absolute_time() * (uint64_t)s_timebase_info.numer) / (uint64_t)s_timebase_info.denom);
}
double getTime()
{
// mach_absolute_time() returns billionth of seconds
const double kOneBillion = 1000000000.0;
return getTime_ns() / kOneBillion;
}
float constrain(float v, float vmin, float vmax)
{
if (v > vmax) return vmax;
if (v < vmin) return vmin;
return v;
}
BOOL skipCalibration = NO;
@interface KFEstimator ()
{
double lastT;
NSDate * lastDisturbance;
int staticPts;
matrix<3> mean_g, mean_m;
matrix<3> max_m, min_m;
float max_x, min_x, max_y, min_y;
}
@end
@implementation KFEstimator
- (id)init
{
self = [super init];
if (self != nil)
{
self.gyroCalibrated = NO;
self.compassCalibrated = NO;
max_m = matrix<3>(-10000.0f, -10000.0f, -10000.0f);
min_m = matrix<3>( 10000.0f, 10000.0f, 10000.0f);
max_x = max_y = -1.0f;
min_x = min_y = 1.0f;
_eskf = new AttitudeESKF();
if (skipCalibration) {
_eskf->m_b = matrix<3> (0.037, -0.0029, -0.0002);
_eskf->m_mc = matrix<3> (201.5953f, -291.3410f, 93.4031f);
_eskf->m_mi = matrix<3> (0.35f, 0, 0.936f);
_eskf->m_Q(0,0) = _eskf->m_Q(1,1) = _eskf->m_Q(2,2) = 1.0e-4f;
_eskf->m_R(0,0) = _eskf->m_R(1,1) = _eskf->m_R(2,2) = 0.02f;
_eskf->m_R = _eskf->m_R * 20;
// compass
_eskf->m_R(3,3) = 1.0410; _eskf->m_R(3,4) = 0.0650; _eskf->m_R(3,5) = 0.0737;
_eskf->m_R(4,3) = 0.0650; _eskf->m_R(4,4) = 1.2123; _eskf->m_R(4,5) = -0.1402;
_eskf->m_R(5,3) = 0.0737; _eskf->m_R(5,4) = -0.1402; _eskf->m_R(5,5) = 1.5370;
//_eskf->m_R = _eskf->m_R * 0.01f;
self.gyroCalibrated = YES;
self.compassCalibrated = YES;
}
}
return self;
}
- (void)dealloc
{
if (_eskf) {
delete _eskf;
}
}
- (void)readAccel:(CMAcceleration)acceleration
rates:(CMRotationRate)rotationRate
field:(CMMagneticField)magneticField
{
double T = getTime();
float delta = (float)MAX(MIN(T - lastT, 0.1), 0.01);
lastT = T;
auto ar = matrix<3>(-acceleration.x, -acceleration.y, -acceleration.z);
auto gr = matrix<3>(-rotationRate.x, -rotationRate.y, -rotationRate.z);
auto mr = matrix<3>(-magneticField.x, -magneticField.y, -magneticField.z);
// get rough estimates of angles
float phi = asin(-constrain(ar(1), -1.0f, 1.0f)); // pitch
float theta = atan2(ar(0), ar(2)); // roll
if (!self.gyroCalibrated)
{
if (fabsf(phi) > 0.06f || fabsf(theta) > 0.06f || fabsf(gr(0)) > 0.1f || fabsf(gr(1)) > 0.1f || fabsf(gr(2)) > 0.1f) {
lastDisturbance = [NSDate date];
NSLog(@"Disturbed!");
}
if (lastDisturbance.timeIntervalSinceNow < -2.0 || !lastDisturbance)
{
// at 'rest', record point
mean_g = (mean_g * staticPts + gr) / (staticPts + 1);
mean_m = (mean_m * staticPts + mr) / (staticPts + 1);
}
// 300 calibration points, the above method has ~ converged to the real mean
if (staticPts++ == 300)
{
matrix <6,6> R; // these params were determined in advanced using samples + matlab
matrix <3,3> Q;
// gyroscope
Q(0,0) = Q(1,1) = Q(2,2) = 0.0001f;
// accelerometer
R(0,0) = R(1,1) = R(2,2) = 0.01f;
R = R * 10;
// compass
R(3,3) = 1.041; R(3,4) = 0.065; R(3,5) = 0.074;
R(4,3) = 0.065; R(4,4) = 1.212; R(4,5) = -0.0140;
R(5,3) = 0.074; R(5,4) = -0.014; R(5,5) = 1.537;
_eskf->Q() = Q;
_eskf->R() = R; // scale R up to smooth results
_eskf->setGyroBias(mean_g);
NSLog(@"Gyro calibrated, gyro bias: %f, %f, %f", mean_g(0), mean_g(1), mean_g(2));
self.gyroCalibrated = YES;
}
}
else if (!self.compassCalibrated)
{
for (int i=0; i < 3; i++) {
max_m(i) = MAX(max_m(i), mr(i));
min_m(i) = MIN(min_m(i), mr(i));
}
max_x = MAX(ar(0), max_x);
min_x = MIN(ar(0), min_x);
max_y = MAX(ar(1), max_y);
min_y = MIN(ar(1), min_y);
// this is a lazy man's magnetometer calibration
// condition: swept through close to 180 degrees on both axes
// we consider this close enough to a sphere
if ((max_x - min_x > 1.8f) &&
(max_y - min_y > 1.8f))
{
auto offset = (max_m + min_m) * 0.5f;
// determine inertial magnetic field (x-axis aligned with field)
mean_m = mean_m - offset;
mean_m(0) = std::sqrt(mean_m(0)*mean_m(0) + mean_m(1)*mean_m(1));
mean_m(1) = 0;
//mean_m(2) = 0;
// mean_m.normalize_safe();
NSLog(@"Compass calibrated, offset: %f, %f, %f, inertial: %f, %f, %f", offset(0), offset(1), offset(2),
mean_m(0), mean_m(1), mean_m(2));
_eskf->setMagnetometerOffset(offset);
_eskf->setInertialField(mean_m);
self.compassCalibrated = YES;
}
}
else
{
// we may now estimate everything
_eskf->predict(gr, delta);
_eskf->update(ar, mr, true); // true = use compass, false = integrate freely on yaw axis
}
}
@end