-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_result.py
83 lines (69 loc) · 2.58 KB
/
parse_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import re
import numpy as np
def parse_file(name):
file = open(name)
# the dict this function returns
data = {}
numpoints = 1
ind = 0
shape = []
variables = {}
for line in file:
#print line
if line.startswith('<'):
if line.startswith('<indep'):
#print line
r = re.match(r'\<(\w+) (\S+) (\d+)\>', line)
g = r.groups()
# there can be several independent variables -> numpoints keeps
# the total number of points
numpoints = numpoints * int(g[2])
name = g[1]
# reserve an array for the values
data[name] = np.zeros(int(g[2]))
ind = 0
# save the simulation points in an array
shape = np.append(shape, int(g[2]))
# save that this variable is independent
variables[name] = 'indep'
if line.startswith('<dep'):
#print line
r = re.match(r'\<dep (\S+)', line)
g = r.groups()
name = g[0]
# reserve a complex matrix to be on the safe side
data[name] = np.zeros(int(numpoints), np.complex128)
ind = 0
# store that this is a dependent variable
variables[name] = 'dep'
else:
jind = line.find('j')
if(jind == -1):
# real number -> just parse it
val = float(line)
else:
# complex number -> break into re/im part
val_re = line[0:jind-1]
sign = line[jind-1]
val_im = sign + line[jind+1:-1]
# and convert it into a complex number
val = complex(float(val_re), float(val_im))
# store the extracted datapoint
data[name][ind] = val
ind = ind + 1
data['variables'] = variables
# reverse the shape variable in order to get the reshape operation (see below)
# correct
shape = shape[::-1].astype('int')
shape = shape.squeeze()
# Problem: shape currently has float values.
# here comes the clever trick :-)
# if a dependent variable depends on N > 1 (independent) variables,
# we reshape the vector we have obtained so far into an N-dimensional
# matrix
for key in data['variables']:
temp = data['variables'][key]
if temp == 'dep':
temp_data = data[key]
data[key] = np.reshape(temp_data, shape).squeeze()
return data