forked from MousaviSajad/SleepEEGNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
275 lines (226 loc) · 9.99 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
'''
https://github.com/akaraspt/deepsleepnet
Copyright 2017 Akara Supratak and Hao Dong. All rights reserved.
'''
import os
import numpy as np
import re
class SeqDataLoader(object):
def __init__(self, data_dir, n_folds, fold_idx,classes):
self.data_dir = data_dir
self.n_folds = n_folds
self.fold_idx = fold_idx
self.classes = classes
def load_npz_file(self, npz_file):
"""Load data_2013 and labels from a npz file."""
with np.load(npz_file) as f:
data = f["x"]
labels = f["y"]
sampling_rate = f["fs"]
return data, labels, sampling_rate
def save_to_npz_file(self, data, labels, sampling_rate, filename):
# Save
save_dict = {
"x": data,
"y": labels,
"fs": sampling_rate,
}
np.savez(filename, **save_dict)
def _load_npz_list_files(self, npz_files):
"""Load data_2013 and labels from list of npz files."""
data = []
labels = []
fs = None
for npz_f in npz_files:
print ("Loading {} ...".format(npz_f))
tmp_data, tmp_labels, self.sampling_rate = self.load_npz_file(npz_f)
if fs is None:
fs = self.sampling_rate
elif fs != self.sampling_rate:
raise Exception("Found mismatch in sampling rate.")
# Reshape the data_2013 to match the input of the model - conv2d
tmp_data = np.squeeze(tmp_data)
# tmp_data = tmp_data[:, :, np.newaxis, np.newaxis]
# # Reshape the data_2013 to match the input of the model - conv1d
# tmp_data = tmp_data[:, :, np.newaxis]
# Casting
tmp_data = tmp_data.astype(np.float32)
tmp_labels = tmp_labels.astype(np.int32)
# normalize each 30s sample such that each has zero mean and unit vairance
tmp_data = (tmp_data - np.expand_dims(tmp_data.mean(axis=1),axis= 1)) / np.expand_dims(tmp_data.std(axis=1),axis=1)
data.append(tmp_data)
labels.append(tmp_labels)
return data, labels
def _load_cv_data(self, list_files):
"""Load sequence training and cross-validation sets."""
# Split files for training and validation sets
val_files = np.array_split(list_files, self.n_folds)
train_files = np.setdiff1d(list_files, val_files[self.fold_idx])
# Load a npz file
print ("Load training set:")
data_train, label_train = self._load_npz_list_files(train_files)
print (" ")
print ("Load validation set:")
data_val, label_val = self._load_npz_list_files(val_files[self.fold_idx])
print (" ")
return data_train, label_train, data_val, label_val
def load_test_data(self):
# Remove non-mat files, and perform ascending sort
allfiles = os.listdir(self.data_dir)
npzfiles = []
for idx, f in enumerate(allfiles):
if ".npz" in f:
npzfiles.append(os.path.join(self.data_dir, f))
npzfiles.sort()
# Files for validation sets
val_files = np.array_split(npzfiles, self.n_folds)
val_files = val_files[self.fold_idx]
print ("\n========== [Fold-{}] ==========\n".format(self.fold_idx))
print ("Load validation set:")
data_val, label_val = self._load_npz_list_files(val_files)
return data_val, label_val
def load_data(self, seq_len = 10, shuffle = True, n_files=None):
# Remove non-mat files, and perform ascending sort
allfiles = os.listdir(self.data_dir)
npzfiles = []
for idx, f in enumerate(allfiles):
if ".npz" in f:
npzfiles.append(os.path.join(self.data_dir, f))
npzfiles.sort()
if n_files is not None:
npzfiles = npzfiles[:n_files]
# subject_files = []
# for idx, f in enumerate(allfiles):
# if self.fold_idx < 10:
# pattern = re.compile("[a-zA-Z0-9]*0{}[1-9]E0\.npz$".format(self.fold_idx))
# else:
# pattern = re.compile("[a-zA-Z0-9]*{}[1-9]E0\.npz$".format(self.fold_idx))
# if pattern.match(f):
# subject_files.append(os.path.join(self.data_dir, f))
# randomize the order of the file names just for one time!
r_permute = np.random.permutation(len(npzfiles))
filename = "r_permute.npz"
if (os.path.isfile(filename)):
with np.load(filename) as f:
r_permute = f["inds"]
else:
save_dict = {
"inds": r_permute,
}
np.savez(filename, **save_dict)
npzfiles = np.asarray(npzfiles)[r_permute]
train_files = np.array_split(npzfiles, self.n_folds)
subject_files = train_files[self.fold_idx]
train_files = list(set(npzfiles) - set(subject_files))
# train_files.sort()
# subject_files.sort()
# Load training and validation sets
print ("\n========== [Fold-{}] ==========\n".format(self.fold_idx))
print ("Load training set:")
data_train, label_train = self._load_npz_list_files(train_files)
print (" ")
print ("Load Test set:")
data_test, label_test = self._load_npz_list_files(subject_files)
print (" ")
print ("Training set: n_subjects={}".format(len(data_train)))
n_train_examples = 0
for d in data_train:
print d.shape
n_train_examples += d.shape[0]
print ("Number of examples = {}".format(n_train_examples))
self.print_n_samples_each_class(np.hstack(label_train),self.classes)
print (" ")
print ("Test set: n_subjects = {}".format(len(data_test)))
n_test_examples = 0
for d in data_test:
print d.shape
n_test_examples += d.shape[0]
print ("Number of examples = {}".format(n_test_examples))
self.print_n_samples_each_class(np.hstack(label_test),self.classes)
print (" ")
data_train = np.vstack(data_train)
label_train = np.hstack(label_train)
data_train = [data_train[i:i + seq_len] for i in range(0, len(data_train), seq_len)]
label_train = [label_train[i:i + seq_len] for i in range(0, len(label_train), seq_len)]
if data_train[-1].shape[0]!=seq_len:
data_train.pop()
label_train.pop()
data_train = np.asarray(data_train)
label_train = np.asarray(label_train)
data_test = np.vstack(data_test)
label_test = np.hstack(label_test)
data_test = [data_test[i:i + seq_len] for i in range(0, len(data_test), seq_len)]
label_test = [label_test[i:i + seq_len] for i in range(0, len(label_test), seq_len)]
if data_test[-1].shape[0]!=seq_len:
data_test.pop()
label_test.pop()
data_test = np.asarray(data_test)
label_test = np.asarray(label_test)
# shuffle
if shuffle is True:
# training data_2013
permute = np.random.permutation(len(label_train))
data_train = np.asarray(data_train)
data_train = data_train[permute]
label_train = label_train[permute]
# test data_2013
permute = np.random.permutation(len(label_test))
data_test = np.asarray(data_test)
data_test = data_test[permute]
label_test = label_test[permute]
return data_train, label_train, data_test, label_test
@staticmethod
def load_subject_data(data_dir, subject_idx):
# Remove non-mat files, and perform ascending sort
allfiles = os.listdir(data_dir)
subject_files = []
for idx, f in enumerate(allfiles):
if subject_idx < 10:
pattern = re.compile("[a-zA-Z0-9]*0{}[1-9]E0\.npz$".format(subject_idx))
else:
pattern = re.compile("[a-zA-Z0-9]*{}[1-9]E0\.npz$".format(subject_idx))
if pattern.match(f):
subject_files.append(os.path.join(data_dir, f))
# Files for validation sets
if len(subject_files) == 0 or len(subject_files) > 2:
raise Exception("Invalid file pattern")
def load_npz_file(npz_file):
"""Load data_2013 and labels from a npz file."""
with np.load(npz_file) as f:
data = f["x"]
labels = f["y"]
sampling_rate = f["fs"]
return data, labels, sampling_rate
def load_npz_list_files(npz_files):
"""Load data_2013 and labels from list of npz files."""
data = []
labels = []
fs = None
for npz_f in npz_files:
print ("Loading {} ...".format(npz_f))
tmp_data, tmp_labels, sampling_rate = load_npz_file(npz_f)
if fs is None:
fs = sampling_rate
elif fs != sampling_rate:
raise Exception("Found mismatch in sampling rate.")
# Reshape the data_2013 to match the input of the model - conv2d
tmp_data = np.squeeze(tmp_data)
# tmp_data = tmp_data[:, :, np.newaxis, np.newaxis]
# # Reshape the data_2013 to match the input of the model - conv1d
# tmp_data = tmp_data[:, :, np.newaxis]
# Casting
tmp_data = tmp_data.astype(np.float32)
tmp_labels = tmp_labels.astype(np.int32)
data.append(tmp_data)
labels.append(tmp_labels)
return data, labels
print ("Load data_2013 from: {}".format(subject_files))
data, labels = load_npz_list_files(subject_files)
return data, labels
@staticmethod
def print_n_samples_each_class(labels,classes):
class_dict = dict(zip(range(len(classes)),classes))
unique_labels = np.unique(labels)
for c in unique_labels:
n_samples = len(np.where(labels == c)[0])
print ("{}: {}".format(class_dict[c], n_samples))