forked from akaraspt/tinysleepnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminibatching.py
127 lines (104 loc) · 5.13 KB
/
minibatching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import math
import numpy as np
def iterate_minibatches(inputs, targets, batch_size, shuffle=False):
"""
Generate a generator that return a batch of inputs and targets.
"""
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
if shuffle:
excerpt = indices[start_idx:start_idx + batch_size]
else:
excerpt = slice(start_idx, start_idx + batch_size)
yield inputs[excerpt], targets[excerpt]
def iterate_batch_seq_minibatches(inputs, targets, batch_size, seq_length):
"""
Generate a generator that return a batch of sequences of inputs and targets.
This function splits a sequence of inputs and targets into multiple sub-
sequences equally. Then it further splits each sub-sequence into multiple
chunks with the size of seq_length.
"""
assert len(inputs) == len(targets)
n_inputs = len(inputs)
batch_len = n_inputs // batch_size
epoch_size = batch_len // seq_length
if epoch_size == 0:
raise ValueError("epoch_size == 0, decrease batch_size or seq_length")
seq_inputs = np.zeros((batch_size, batch_len) + inputs.shape[1:],
dtype=inputs.dtype)
seq_targets = np.zeros((batch_size, batch_len) + targets.shape[1:],
dtype=targets.dtype)
for i in range(batch_size):
seq_inputs[i] = inputs[i*batch_len:(i+1)*batch_len]
seq_targets[i] = targets[i*batch_len:(i+1)*batch_len]
for i in range(epoch_size):
x = seq_inputs[:, i*seq_length:(i+1)*seq_length]
y = seq_targets[:, i*seq_length:(i+1)*seq_length]
flatten_x = x.reshape((-1,) + inputs.shape[1:])
flatten_y = y.reshape((-1,) + targets.shape[1:])
yield flatten_x, flatten_y
def iterate_batch_multiple_seq_minibatches(inputs, targets, batch_size, seq_length, shuffle_idx=None, augment_seq=False):
"""
Generate a generator that return a batch of sequences of inputs and targets.
This function randomly selects batches of multiple sequence. It then iterates
through multiple sequence in parallel to generate a sequence of inputs and
targets. It will append the input sequence with 0 and target with -1 when
the lenght of each sequence is not equal.
"""
assert len(inputs) == len(targets)
n_inputs = len(inputs)
if shuffle_idx is None:
# No shuffle
seq_idx = np.arange(n_inputs)
else:
# Shuffle subjects (get the shuffled indices from argument)
seq_idx = shuffle_idx
input_sample_shape = inputs[0].shape[1:]
target_sample_shape = targets[0].shape[1:]
# Compute the number of maximum loops
n_loops = int(math.ceil(len(seq_idx) / batch_size))
# For each batch of subjects (size=batch_size)
for l in range(n_loops):
start_idx = l*batch_size
end_idx = (l+1)*batch_size
seq_inputs = np.asarray(inputs)[seq_idx[start_idx:end_idx]]
seq_targets = np.asarray(targets)[seq_idx[start_idx:end_idx]]
if augment_seq:
# Data augmentation: multiple sequences
# Randomly skip some epochs at the beginning -> generate multiple sequence
max_skips = 5
for s_idx in range(len(seq_inputs)):
n_skips = np.random.randint(max_skips)
seq_inputs[s_idx] = seq_inputs[s_idx][n_skips:]
seq_targets[s_idx] = seq_targets[s_idx][n_skips:]
# Determine the maximum number of batch sequences
n_max_seq_inputs = -1
for s_idx, s in enumerate(seq_inputs):
if len(s) > n_max_seq_inputs:
n_max_seq_inputs = len(s)
n_batch_seqs = int(math.ceil(n_max_seq_inputs / seq_length))
# For each batch sequence (size=seq_length)
for b in range(n_batch_seqs):
start_loop = True if b == 0 else False
start_idx = b*seq_length
end_idx = (b+1)*seq_length
batch_inputs = np.zeros((batch_size, seq_length) + input_sample_shape, dtype=np.float32)
batch_targets = np.zeros((batch_size, seq_length) + target_sample_shape, dtype=np.int)
batch_weights = np.zeros((batch_size, seq_length), dtype=np.float32)
batch_seq_len = np.zeros(batch_size, dtype=np.int)
# For each subject
for s_idx, s in enumerate(zip(seq_inputs, seq_targets)):
# (seq_len, sample_shape)
each_seq_inputs = s[0][start_idx:end_idx]
each_seq_targets = s[1][start_idx:end_idx]
batch_inputs[s_idx, :len(each_seq_inputs)] = each_seq_inputs
batch_targets[s_idx, :len(each_seq_targets)] = each_seq_targets
batch_weights[s_idx, :len(each_seq_inputs)] = 1
batch_seq_len[s_idx] = len(each_seq_inputs)
batch_x = batch_inputs.reshape((-1,) + input_sample_shape)
batch_y = batch_targets.reshape((-1,) + target_sample_shape)
batch_weights = batch_weights.reshape(-1)
yield batch_x, batch_y, batch_weights, batch_seq_len, start_loop