forked from akaraspt/tinysleepnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
262 lines (222 loc) · 9.41 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import argparse
import glob
import importlib
import os
import numpy as np
import shutil
import sklearn.metrics as skmetrics
import tensorflow as tf
from data import load_data, get_subject_files
from model import TinySleepNet
from minibatching import (iterate_minibatches,
iterate_batch_seq_minibatches,
iterate_batch_multiple_seq_minibatches)
from utils import (get_balance_class_oversample,
print_n_samples_each_class,
save_seq_ids,
load_seq_ids)
from logger import get_logger
def compute_performance(cm):
"""Computer performance metrics from confusion matrix.
It computers performance metrics from confusion matrix.
It returns:
- Total number of samples
- Number of samples in each class
- Accuracy
- Macro-F1 score
- Per-class precision
- Per-class recall
- Per-class f1-score
"""
tp = np.diagonal(cm).astype(np.float)
tpfp = np.sum(cm, axis=0).astype(np.float) # sum of each col
tpfn = np.sum(cm, axis=1).astype(np.float) # sum of each row
acc = np.sum(tp) / np.sum(cm)
precision = tp / tpfp
recall = tp / tpfn
f1 = (2 * precision * recall) / (precision + recall)
mf1 = np.mean(f1)
total = np.sum(cm)
n_each_class = tpfn
return total, n_each_class, acc, mf1, precision, recall, f1
def predict(
config_file,
model_dir,
output_dir,
log_file,
use_best=True,
):
spec = importlib.util.spec_from_file_location("*", config_file)
config = importlib.util.module_from_spec(spec)
spec.loader.exec_module(config)
config = config.predict
# Create output directory for the specified fold_idx
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Create logger
logger = get_logger(log_file, level="info")
subject_files = glob.glob(os.path.join(config["data_dir"], "*.npz"))
# Load subject IDs
fname = "{}.txt".format(config["dataset"])
seq_sids = load_seq_ids(fname)
logger.info("Load generated SIDs from {}".format(fname))
logger.info("SIDs ({}): {}".format(len(seq_sids), seq_sids))
# Split training and test sets
fold_pids = np.array_split(seq_sids, config["n_folds"])
# Add dummy class weights
config["class_weights"] = np.ones(config["n_classes"], dtype=np.float32)
trues = []
preds = []
for fold_idx in range(config["n_folds"]):
logger.info("------ Fold {}/{} ------".format(fold_idx+1, config["n_folds"]))
test_sids = fold_pids[fold_idx]
logger.info("Test SIDs: ({}) {}".format(len(test_sids), test_sids))
model = TinySleepNet(
config=config,
output_dir=os.path.join(model_dir, str(fold_idx)),
use_rnn=True,
testing=True,
use_best=use_best,
)
# Get corresponding files
s_trues = []
s_preds = []
for sid in test_sids:
logger.info("Subject ID: {}".format(sid))
test_files = get_subject_files(
dataset=config["dataset"],
files=subject_files,
sid=sid,
)
for vf in test_files: logger.info("Load files {} ...".format(vf))
test_x, test_y, _ = load_data(test_files)
# Print test set
logger.info("Test set (n_night_sleeps={})".format(len(test_y)))
for _x in test_x: logger.info(_x.shape)
print_n_samples_each_class(np.hstack(test_y))
if config["model"] == "model-origin":
for night_idx, night_data in enumerate(zip(test_x, test_y)):
# Create minibatches for testing
night_x, night_y = night_data
test_minibatch_fn = iterate_batch_seq_minibatches(
night_x,
night_y,
batch_size=config["batch_size"],
seq_length=config["seq_length"],
)
# Evaluate
test_outs = model.evaluate(test_minibatch_fn)
s_trues.extend(test_outs["test/trues"])
s_preds.extend(test_outs["test/preds"])
trues.extend(test_outs["test/trues"])
preds.extend(test_outs["test/preds"])
# Save labels and predictions (each night of each subject)
save_dict = {
"y_true": test_outs["test/trues"],
"y_pred": test_outs["test/preds"],
}
fname = os.path.basename(test_files[night_idx]).split(".")[0]
save_path = os.path.join(
output_dir,
"pred_{}.npz".format(fname)
)
np.savez(save_path, **save_dict)
logger.info("Saved outputs to {}".format(save_path))
else:
for night_idx, night_data in enumerate(zip(test_x, test_y)):
# Create minibatches for testing
night_x, night_y = night_data
test_minibatch_fn = iterate_batch_multiple_seq_minibatches(
[night_x],
[night_y],
batch_size=config["batch_size"],
seq_length=config["seq_length"],
shuffle_idx=None,
augment_seq=False,
)
if (config.get('augment_signal') is not None) and config['augment_signal']:
# Evaluate
test_outs = model.evaluate_aug(test_minibatch_fn)
else:
# Evaluate
test_outs = model.evaluate(test_minibatch_fn)
s_trues.extend(test_outs["test/trues"])
s_preds.extend(test_outs["test/preds"])
trues.extend(test_outs["test/trues"])
preds.extend(test_outs["test/preds"])
# Save labels and predictions (each night of each subject)
save_dict = {
"y_true": test_outs["test/trues"],
"y_pred": test_outs["test/preds"],
}
fname = os.path.basename(test_files[night_idx]).split(".")[0]
save_path = os.path.join(
output_dir,
"pred_{}.npz".format(fname)
)
np.savez(save_path, **save_dict)
logger.info("Saved outputs to {}".format(save_path))
s_acc = skmetrics.accuracy_score(y_true=s_trues, y_pred=s_preds)
s_f1_score = skmetrics.f1_score(y_true=s_trues, y_pred=s_preds, average="macro")
s_cm = skmetrics.confusion_matrix(y_true=s_trues, y_pred=s_preds, labels=[0,1,2,3,4])
logger.info("n={}, acc={:.1f}, mf1={:.1f}".format(
len(s_preds),
s_acc*100.0,
s_f1_score*100.0,
))
logger.info(">> Confusion Matrix")
logger.info(s_cm)
tf.reset_default_graph()
logger.info("------------------------")
logger.info("")
acc = skmetrics.accuracy_score(y_true=trues, y_pred=preds)
f1_score = skmetrics.f1_score(y_true=trues, y_pred=preds, average="macro")
cm = skmetrics.confusion_matrix(y_true=trues, y_pred=preds, labels=[0,1,2,3,4])
logger.info("")
logger.info("=== Overall ===")
print_n_samples_each_class(trues)
logger.info("n={}, acc={:.1f}, mf1={:.1f}".format(
len(preds),
acc*100.0,
f1_score*100.0,
))
logger.info(">> Confusion Matrix")
logger.info(cm)
metrics = compute_performance(cm=cm)
logger.info("Total: {}".format(metrics[0]))
logger.info("Number of samples from each class: {}".format(metrics[1]))
logger.info("Accuracy: {:.1f}".format(metrics[2]*100.0))
logger.info("Macro F1-Score: {:.1f}".format(metrics[3]*100.0))
logger.info("Per-class Precision: " + " ".join(["{:.1f}".format(m*100.0) for m in metrics[4]]))
logger.info("Per-class Recall: " + " ".join(["{:.1f}".format(m*100.0) for m in metrics[5]]))
logger.info("Per-class F1-Score: " + " ".join(["{:.1f}".format(m*100.0) for m in metrics[6]]))
# Save labels and predictions (all)
save_dict = {
"y_true": trues,
"y_pred": preds,
"seq_sids": seq_sids,
"config": config,
}
save_path = os.path.join(
output_dir,
"{}.npz".format(config["dataset"])
)
np.savez(save_path, **save_dict)
logger.info("Saved summary to {}".format(save_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config_file", type=str, required=True)
parser.add_argument("--model_dir", type=str, default="./out_sleepedf/finetune")
parser.add_argument("--output_dir", type=str, default="./output/predict")
parser.add_argument("--log_file", type=str, default="./output/output.log")
parser.add_argument("--use-best", dest="use_best", action="store_true")
parser.add_argument("--no-use-best", dest="use_best", action="store_false")
parser.set_defaults(use_best=False)
args = parser.parse_args()
predict(
config_file=args.config_file,
model_dir=args.model_dir,
output_dir=args.output_dir,
log_file=args.log_file,
use_best=args.use_best,
)