forked from akaraspt/tinysleepnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
408 lines (363 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import argparse
import glob
import importlib
import os
import numpy as np
import shutil
import mne
import tensorflow as tf
import matplotlib.pyplot as plt
from data import load_data, get_subject_files
from model import TinySleepNet
from minibatching import (iterate_minibatches,
iterate_batch_seq_minibatches,
iterate_batch_multiple_seq_minibatches)
from utils import (get_balance_class_oversample,
print_n_samples_each_class,
compute_portion_each_class,
save_seq_ids,
load_seq_ids)
from logger import get_logger
import logging
tf.get_logger().setLevel(logging.ERROR)
def train(
config_file,
fold_idx,
output_dir,
log_file,
restart=False,
random_seed=42,
):
spec = importlib.util.spec_from_file_location("*", config_file)
config = importlib.util.module_from_spec(spec)
spec.loader.exec_module(config)
config = config.train
# Create output directory for the specified fold_idx
output_dir = os.path.join(output_dir, str(fold_idx))
if restart:
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir)
else:
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Create logger
logger = get_logger(log_file, level="info")
subject_files = glob.glob(os.path.join(config["data_dir"], "*.npz"))
# Load subject IDs
fname = "{}.txt".format(config["dataset"])
seq_sids = load_seq_ids(fname)
logger.info("Load generated SIDs from {}".format(fname))
logger.info("SIDs ({}): {}".format(len(seq_sids), seq_sids))
# Split training and test sets
fold_pids = np.array_split(seq_sids, config["n_folds"])
test_sids = fold_pids[fold_idx]
train_sids = np.setdiff1d(seq_sids, test_sids)
# Further split training set as validation set (10%)
n_valids = round(len(train_sids) * 0.10)
# Set random seed to control the randomness
np.random.seed(random_seed)
valid_sids = np.random.choice(train_sids, size=n_valids, replace=False)
train_sids = np.setdiff1d(train_sids, valid_sids)
logger.info("Train SIDs: ({}) {}".format(len(train_sids), train_sids))
logger.info("Valid SIDs: ({}) {}".format(len(valid_sids), valid_sids))
logger.info("Test SIDs: ({}) {}".format(len(test_sids), test_sids))
# Get corresponding files
train_files = []
for sid in train_sids:
train_files.append(get_subject_files(
dataset=config["dataset"],
files=subject_files,
sid=sid,
))
train_files = np.hstack(train_files)
train_x, train_y, _ = load_data(train_files)
valid_files = []
for sid in valid_sids:
valid_files.append(get_subject_files(
dataset=config["dataset"],
files=subject_files,
sid=sid,
))
valid_files = np.hstack(valid_files)
valid_x, valid_y, _ = load_data(valid_files)
test_files = []
for sid in test_sids:
test_files.append(get_subject_files(
dataset=config["dataset"],
files=subject_files,
sid=sid,
))
test_files = np.hstack(test_files)
test_x, test_y, _ = load_data(test_files)
# Print training, validation and test sets
logger.info("Training set (n_night_sleeps={})".format(len(train_y)))
for _x in train_x: logger.info(_x.shape)
print_n_samples_each_class(np.hstack(train_y))
logger.info("Validation set (n_night_sleeps={})".format(len(valid_y)))
for _x in valid_x: logger.info(_x.shape)
print_n_samples_each_class(np.hstack(valid_y))
logger.info("Test set (n_night_sleeps={})".format(len(test_y)))
for _x in test_x: logger.info(_x.shape)
print_n_samples_each_class(np.hstack(test_y))
# Add class weights to determine loss
# class_weights = compute_portion_each_class(np.hstack(train_y))
# config["class_weights"] = 1. - class_weights
# Force to use 1.5 only for N1
if config.get('weighted_cross_ent') is None:
config['weighted_cross_ent'] = False
logger.info(f' Weighted cross entropy: Not specified --> default: {config["weighted_cross_ent"]}')
else:
logger.info(f' Weighted cross entropy: {config["weighted_cross_ent"]}')
if config['weighted_cross_ent']:
config["class_weights"] = np.asarray([1., 1.5, 1., 1., 1.], dtype=np.float32)
else:
config["class_weights"] = np.asarray([1., 1., 1., 1., 1.], dtype=np.float32)
logger.info(f' Weighted cross entropy: {config["class_weights"]}')
# Create a model
model = TinySleepNet(
config=config,
output_dir=output_dir,
use_rnn=True,
testing=False,
use_best=False,
)
# Data Augmentation Details
logger.info('Data Augmentation')
if config.get('augment_seq') is None:
config['augment_seq'] = False
logger.info(f' Sequence: Not specified --> default: {config["augment_seq"]}')
else:
logger.info(f' Sequence: {config["augment_seq"]}')
if config.get('augment_signal') is None:
config['augment_signal'] = False
logger.info(f' Signal: Not specified --> default: {config["augment_signal"]}')
else:
logger.info(f' Signal: {config["augment_signal"]}')
if config.get('augment_signal_full') is None:
config['augment_signal_full'] = False
logger.info(f' Signal full: Not specified --> default: {config["augment_signal_full"]}')
else:
logger.info(f' Signal full: {config["augment_signal_full"]}')
if config.get('augment_signal') and config.get('augment_signal_full'):
raise Exception('augment_signal and augment_signal_full cannot be True together.!!')
# Train using epoch scheme
best_acc = -1
best_mf1 = -1
update_epoch = -1
for epoch in range(model.get_current_epoch(), config["n_epochs"]):
# Create minibatches for training
shuffle_idx = np.random.permutation(np.arange(len(train_x)))
train_minibatch_fn = iterate_batch_multiple_seq_minibatches(
train_x,
train_y,
batch_size=config["batch_size"],
seq_length=config["seq_length"],
shuffle_idx=shuffle_idx,
augment_seq=config['augment_seq'],
)
if config['augment_signal']:
# Create augmented data
percent = 0.1
aug_train_x = np.copy(train_x)
aug_train_y = np.copy(train_y)
for i in range(len(aug_train_x)):
# Low-pass filtering
choice = np.random.choice([0, 1, 2])
choice = 2 # Ignore filtering
if choice == 0:
filter_x = mne.filter.filter_data(
aug_train_x[i].reshape(-1).astype(np.float64),
config['sampling_rate'], 0.5, 40,
verbose=False,
)
aug_train_x[i] = filter_x.reshape((-1, aug_train_x[i].shape[1], 1, 1)).astype(np.float32)
elif choice == 1:
filter_x = mne.filter.filter_data(
aug_train_x[i].reshape(-1).astype(np.float64),
config['sampling_rate'], 0.5, (config['sampling_rate']/2)-1,
verbose=False,
)
aug_train_x[i] = filter_x.reshape((-1, aug_train_x[i].shape[1], 1, 1)).astype(np.float32)
# choice == 2: no filtering
# Shift signals horizontally
offset = np.random.uniform(-percent, percent) * aug_train_x[i].shape[1]
roll_x = np.roll(aug_train_x[i], int(offset))
if offset < 0:
aug_train_x[i] = roll_x[:-1]
aug_train_y[i] = aug_train_y[i][:-1]
if offset > 0:
aug_train_x[i] = roll_x[1:]
aug_train_y[i] = aug_train_y[i][1:]
roll_x = None
assert len(aug_train_x[i]) == len(aug_train_y[i])
aug_minibatch_fn = iterate_batch_multiple_seq_minibatches(
aug_train_x,
aug_train_y,
batch_size=config["batch_size"],
seq_length=config["seq_length"],
shuffle_idx=shuffle_idx,
augment_seq=config['augment_seq'],
)
# Train
train_outs = model.train_aug(train_minibatch_fn, aug_minibatch_fn)
aug_train_x = None
aug_train_y = None
elif config['augment_signal_full']:
# Create augmented data
percent = 0.1
aug_train_x = np.copy(train_x)
aug_train_y = np.copy(train_y)
for i in range(len(aug_train_x)):
# Shift signals horizontally
offset = np.random.uniform(-percent, percent) * aug_train_x[i].shape[1]
roll_x = np.roll(aug_train_x[i], int(offset))
if offset < 0:
aug_train_x[i] = roll_x[:-1]
aug_train_y[i] = aug_train_y[i][:-1]
if offset > 0:
aug_train_x[i] = roll_x[1:]
aug_train_y[i] = aug_train_y[i][1:]
roll_x = None
assert len(aug_train_x[i]) == len(aug_train_y[i])
aug_minibatch_fn = iterate_batch_multiple_seq_minibatches(
aug_train_x,
aug_train_y,
batch_size=config["batch_size"],
seq_length=config["seq_length"],
shuffle_idx=shuffle_idx,
augment_seq=config['augment_seq'],
)
# Train
train_outs = model.train(aug_minibatch_fn)
else:
# Train
train_outs = model.train(train_minibatch_fn)
# Create minibatches for validation
valid_minibatch_fn = iterate_batch_multiple_seq_minibatches(
valid_x,
valid_y,
batch_size=config["batch_size"],
seq_length=config["seq_length"],
shuffle_idx=None,
augment_seq=False,
)
if config['augment_signal']:
# Evaluate
valid_outs = model.evaluate_aug(valid_minibatch_fn)
else:
# Evaluate
valid_outs = model.evaluate(valid_minibatch_fn)
# Create minibatches for testing
test_minibatch_fn = iterate_batch_multiple_seq_minibatches(
test_x,
test_y,
batch_size=config["batch_size"],
seq_length=config["seq_length"],
shuffle_idx=None,
augment_seq=False,
)
if config['augment_signal']:
# Evaluate
test_outs = model.evaluate_aug(test_minibatch_fn)
else:
# Evaluate
test_outs = model.evaluate(test_minibatch_fn)
# Training summary
summary = tf.Summary()
summary.value.add(tag="lr", simple_value=model.run(model.lr))
summary.value.add(tag="e_losses/train", simple_value=train_outs["train/stream_metrics"]["loss"])
summary.value.add(tag="e_losses/valid", simple_value=valid_outs["test/loss"])
summary.value.add(tag="e_losses/test", simple_value=test_outs["test/loss"])
summary.value.add(tag="e_accuracy/train", simple_value=train_outs["train/accuracy"]*100)
summary.value.add(tag="e_accuracy/valid", simple_value=valid_outs["test/accuracy"]*100)
summary.value.add(tag="e_accuracy/test", simple_value=test_outs["test/accuracy"]*100)
summary.value.add(tag="e_f1_score/train", simple_value=train_outs["train/f1_score"]*100)
summary.value.add(tag="e_f1_score/valid", simple_value=valid_outs["test/f1_score"]*100)
summary.value.add(tag="e_f1_score/test", simple_value=test_outs["test/f1_score"]*100)
model.train_writer.add_summary(summary, train_outs["global_step"])
model.train_writer.flush()
# Plot CNN filters
for v in tf.trainable_variables():
if 'cnn/conv1d_1/conv2d/kernel:0' in v.name:
kernels = model.run(v)
figsize = (24, 16)
n_rows, n_cols = 8, 8
for i in range(kernels.shape[-1]):
if i % (n_rows * n_cols) == 0:
fig, axs = plt.subplots(n_rows, n_cols, figsize=figsize)
kernel = np.squeeze(kernels[:,:,:,i])
row_i = (i // n_cols) % n_rows
col_i = i % n_cols
axs[row_i,col_i].set_title(f'kernel_{i}')
axs[row_i,col_i].plot(kernel)
axs[row_i,col_i].set_xticks([])
axs[row_i,col_i].set_yticks([])
if i % (n_rows * n_cols) == (n_rows * n_cols) - 1:
plt.tight_layout()
fig.savefig(os.path.join(output_dir, f'cnn_kernel_{i // (n_rows * n_cols)}.png'))
plt.close('all')
break
logger.info("[e{}/{} s{}] TR (n={}) l={:.4f} ({:.1f}s) | " \
"VA (n={}) l={:.4f} a={:.1f}, f1={:.1f} ({:.1f}s) | " \
"TE (n={}) a={:.1f}, f1={:.1f} ({:.1f}s)".format(
epoch+1, config["n_epochs"],
train_outs["global_step"],
len(train_outs["train/trues"]),
train_outs["train/stream_metrics"]["loss"],
# train_outs["train/stream_metrics"]["accuracy"]*100,
# train_outs["train/accuracy"]*100,
train_outs["train/duration"],
len(valid_outs["test/trues"]),
valid_outs["test/loss"],
valid_outs["test/accuracy"]*100,
valid_outs["test/f1_score"]*100,
valid_outs["test/duration"],
len(test_outs["test/trues"]),
# test_outs["test/loss"],
test_outs["test/accuracy"]*100,
test_outs["test/f1_score"]*100,
test_outs["test/duration"],
))
model.pass_one_epoch()
# Check best model
if best_acc < valid_outs["test/accuracy"] and \
best_mf1 <= valid_outs["test/f1_score"]:
best_acc = valid_outs["test/accuracy"]
best_mf1 = valid_outs["test/f1_score"]
update_epoch = epoch+1
model.save_best_checkpoint(name="best_model")
# if best_mf1 < valid_outs["test/f1_score"]:
# best_mf1 = valid_outs["test/f1_score"]
# update_epoch = epoch+1
# model.save_best_checkpoint(name="best_model")
# Confusion matrix
if (epoch+1) % config["evaluate_span"] == 0 or (epoch+1) == config["n_epochs"]:
logger.info(">> Confusion Matrix")
logger.info(test_outs["test/cm"])
# Save checkpoint
if (epoch+1) % config["checkpoint_span"] == 0 or (epoch+1) == config["n_epochs"]:
model.save_checkpoint(name="model")
# Early stopping
if update_epoch > 0 and ((epoch+1) - update_epoch) > config["no_improve_epochs"]:
logger.info("*** Early-stopping ***")
break
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config_file", type=str, required=True)
parser.add_argument("--fold_idx", type=int, required=True)
parser.add_argument("--output_dir", type=str, default="./output/train")
parser.add_argument("--restart", dest="restart", action="store_true")
parser.add_argument("--no-restart", dest="restart", action="store_false")
parser.add_argument("--log_file", type=str, default="./output/output.log")
parser.add_argument("--random_seed", type=int, default=42)
parser.set_defaults(restart=False)
args = parser.parse_args()
train(
config_file=args.config_file,
fold_idx=args.fold_idx,
output_dir=args.output_dir,
log_file=args.log_file,
restart=args.restart,
random_seed=args.random_seed,
)