forked from dhlee347/pytorchic-bert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
231 lines (176 loc) · 7.76 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright 2018 Dong-Hyun Lee, Kakao Brain.
# (Strongly inspired by original Google BERT code and Hugging Face's code)
""" Fine-tuning on A Classification Task with pretrained Transformer """
import itertools
import csv
import fire
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import tokenization
import models
import optim
import train
from utils import set_seeds, get_device, truncate_tokens_pair
class CsvDataset(Dataset):
""" Dataset Class for CSV file """
labels = None
def __init__(self, file, pipeline=[]): # cvs file and pipeline object
Dataset.__init__(self)
data = []
with open(file, "r") as f:
# list of splitted lines : line is also list
lines = csv.reader(f, delimiter='\t', quotechar=None)
for instance in self.get_instances(lines): # instance : tuple of fields
for proc in pipeline: # a bunch of pre-processing
instance = proc(instance)
data.append(instance)
# To Tensors
self.tensors = [torch.tensor(x, dtype=torch.long) for x in zip(*data)]
def __len__(self):
return self.tensors[0].size(0)
def __getitem__(self, index):
return tuple(tensor[index] for tensor in self.tensors)
def get_instances(self, lines):
""" get instance array from (csv-separated) line list """
raise NotImplementedError
class MRPC(CsvDataset):
""" Dataset class for MRPC """
labels = ("0", "1") # label names
def __init__(self, file, pipeline=[]):
super().__init__(file, pipeline)
def get_instances(self, lines):
for line in itertools.islice(lines, 1, None): # skip header
yield line[0], line[3], line[4] # label, text_a, text_b
class MNLI(CsvDataset):
""" Dataset class for MNLI """
labels = ("contradiction", "entailment", "neutral") # label names
def __init__(self, file, pipeline=[]):
super().__init__(file, pipeline)
def get_instances(self, lines):
for line in itertools.islice(lines, 1, None): # skip header
yield line[-1], line[8], line[9] # label, text_a, text_b
def dataset_class(task):
""" Mapping from task string to Dataset Class """
table = {'mrpc': MRPC, 'mnli': MNLI}
return table[task]
class Pipeline():
""" Preprocess Pipeline Class : callable """
def __init__(self):
super().__init__()
def __call__(self, instance):
raise NotImplementedError
class Tokenizing(Pipeline):
""" Tokenizing sentence pair """
def __init__(self, preprocessor, tokenize):
super().__init__()
self.preprocessor = preprocessor # e.g. text normalization
self.tokenize = tokenize # tokenize function
def __call__(self, instance):
label, text_a, text_b = instance
label = self.preprocessor(label)
tokens_a = self.tokenize(self.preprocessor(text_a))
tokens_b = self.tokenize(self.preprocessor(text_b)) \
if text_b else []
return (label, tokens_a, tokens_b)
class AddSpecialTokensWithTruncation(Pipeline):
""" Add special tokens [CLS], [SEP] with truncation """
def __init__(self, max_len=512):
super().__init__()
self.max_len = max_len
def __call__(self, instance):
label, tokens_a, tokens_b = instance
# -3 special tokens for [CLS] text_a [SEP] text_b [SEP]
# -2 special tokens for [CLS] text_a [SEP]
_max_len = self.max_len - 3 if tokens_b else self.max_len - 2
truncate_tokens_pair(tokens_a, tokens_b, _max_len)
# Add Special Tokens
tokens_a = ['[CLS]'] + tokens_a + ['[SEP]']
tokens_b = tokens_b + ['[SEP]'] if tokens_b else []
return (label, tokens_a, tokens_b)
class TokenIndexing(Pipeline):
""" Convert tokens into token indexes and do zero-padding """
def __init__(self, indexer, labels, max_len=512):
super().__init__()
self.indexer = indexer # function : tokens to indexes
# map from a label name to a label index
self.label_map = {name: i for i, name in enumerate(labels)}
self.max_len = max_len
def __call__(self, instance):
label, tokens_a, tokens_b = instance
input_ids = self.indexer(tokens_a + tokens_b)
segment_ids = [0]*len(tokens_a) + [1]*len(tokens_b) # token type ids
input_mask = [1]*(len(tokens_a) + len(tokens_b))
label_id = self.label_map[label]
# zero padding
n_pad = self.max_len - len(input_ids)
input_ids.extend([0]*n_pad)
segment_ids.extend([0]*n_pad)
input_mask.extend([0]*n_pad)
return (input_ids, segment_ids, input_mask, label_id)
class Classifier(nn.Module):
""" Classifier with Transformer """
def __init__(self, cfg, n_labels):
super().__init__()
self.transformer = models.Transformer(cfg)
self.fc = nn.Linear(cfg.dim, cfg.dim)
self.activ = nn.Tanh()
self.drop = nn.Dropout(cfg.p_drop_hidden)
self.classifier = nn.Linear(cfg.dim, n_labels)
def forward(self, input_ids, segment_ids, input_mask):
h = self.transformer(input_ids, segment_ids, input_mask)
# only use the first h in the sequence
pooled_h = self.activ(self.fc(h[:, 0]))
logits = self.classifier(self.drop(pooled_h))
return logits
#pretrain_file='../uncased_L-12_H-768_A-12/bert_model.ckpt',
#pretrain_file='../exp/bert/pretrain_100k/model_epoch_3_steps_9732.pt',
def main(task='mrpc',
train_cfg='config/train_mrpc.json',
model_cfg='config/bert_base.json',
data_file='../glue/MRPC/train.tsv',
model_file=None,
pretrain_file='../uncased_L-12_H-768_A-12/bert_model.ckpt',
data_parallel=True,
vocab='../uncased_L-12_H-768_A-12/vocab.txt',
save_dir='../exp/bert/mrpc',
max_len=128,
mode='train'):
cfg = train.Config.from_json(train_cfg)
model_cfg = models.Config.from_json(model_cfg)
set_seeds(cfg.seed)
tokenizer = tokenization.FullTokenizer(vocab_file=vocab, do_lower_case=True)
TaskDataset = dataset_class(task) # task dataset class according to the task
pipeline = [Tokenizing(tokenizer.convert_to_unicode, tokenizer.tokenize),
AddSpecialTokensWithTruncation(max_len),
TokenIndexing(tokenizer.convert_tokens_to_ids,
TaskDataset.labels, max_len)]
dataset = TaskDataset(data_file, pipeline)
data_iter = DataLoader(dataset, batch_size=cfg.batch_size, shuffle=True)
model = Classifier(model_cfg, len(TaskDataset.labels))
criterion = nn.CrossEntropyLoss()
trainer = train.Trainer(cfg,
model,
data_iter,
optim.optim4GPU(cfg, model),
save_dir, get_device())
if mode == 'train':
def get_loss(model, batch, global_step): # make sure loss is a scalar tensor
input_ids, segment_ids, input_mask, label_id = batch
logits = model(input_ids, segment_ids, input_mask)
loss = criterion(logits, label_id)
return loss
trainer.train(get_loss, model_file, pretrain_file, data_parallel)
elif mode == 'eval':
def evaluate(model, batch):
input_ids, segment_ids, input_mask, label_id = batch
logits = model(input_ids, segment_ids, input_mask)
_, label_pred = logits.max(1)
result = (label_pred == label_id).float() #.cpu().numpy()
accuracy = result.mean()
return accuracy, result
results = trainer.eval(evaluate, model_file, data_parallel)
total_accuracy = torch.cat(results).mean().item()
print('Accuracy:', total_accuracy)
if __name__ == '__main__':
fire.Fire(main)