forked from dhlee347/pytorchic-bert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
254 lines (207 loc) · 9.98 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright 2018 Dong-Hyun Lee, Kakao Brain.
# (Strongly inspired by original Google BERT code and Hugging Face's code)
""" Pretrain transformer with Masked LM and Sentence Classification """
from random import randint, shuffle
from random import random as rand
import fire
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import tokenization
import models
import optim
import train
from utils import set_seeds, get_device, get_random_word, truncate_tokens_pair
# Input file format :
# 1. One sentence per line. These should ideally be actual sentences,
# not entire paragraphs or arbitrary spans of text. (Because we use
# the sentence boundaries for the "next sentence prediction" task).
# 2. Blank lines between documents. Document boundaries are needed
# so that the "next sentence prediction" task doesn't span between documents.
def seek_random_offset(f, back_margin=2000):
""" seek random offset of file pointer """
f.seek(0, 2)
# we remain some amount of text to read
max_offset = f.tell() - back_margin
f.seek(randint(0, max_offset), 0)
f.readline() # throw away an incomplete sentence
class SentPairDataLoader():
""" Load sentence pair (sequential or random order) from corpus """
def __init__(self, file, batch_size, tokenize, max_len, short_sampling_prob=0.1, pipeline=[]):
super().__init__()
self.f_pos = open(file, "r", encoding='utf-8', errors='ignore') # for a positive sample
self.f_neg = open(file, "r", encoding='utf-8', errors='ignore') # for a negative (random) sample
self.tokenize = tokenize # tokenize function
self.max_len = max_len # maximum length of tokens
self.short_sampling_prob = short_sampling_prob
self.pipeline = pipeline
self.batch_size = batch_size
def read_tokens(self, f, length, discard_last_and_restart=True):
""" Read tokens from file pointer with limited length """
tokens = []
while len(tokens) < length:
line = f.readline()
if not line: # end of file
return None
if not line.strip(): # blank line (delimiter of documents)
if discard_last_and_restart:
tokens = [] # throw all and restart
continue
else:
return tokens # return last tokens in the document
tokens.extend(self.tokenize(line.strip()))
return tokens
def __iter__(self): # iterator to load data
while True:
batch = []
for i in range(self.batch_size):
# sampling length of each tokens_a and tokens_b
# sometimes sample a short sentence to match between train and test sequences
len_tokens = randint(1, int(self.max_len / 2)) \
if rand() < self.short_sampling_prob \
else int(self.max_len / 2)
is_next = rand() < 0.5 # whether token_b is next to token_a or not
tokens_a = self.read_tokens(self.f_pos, len_tokens, True)
seek_random_offset(self.f_neg)
f_next = self.f_pos if is_next else self.f_neg
tokens_b = self.read_tokens(f_next, len_tokens, False)
if tokens_a is None or tokens_b is None: # end of file
self.f_pos.seek(0, 0) # reset file pointer
return
instance = (is_next, tokens_a, tokens_b)
for proc in self.pipeline:
instance = proc(instance)
batch.append(instance)
# To Tensor
batch_tensors = [torch.tensor(x, dtype=torch.long) for x in zip(*batch)]
yield batch_tensors
class Pipeline():
""" Pre-process Pipeline Class : callable """
def __init__(self):
super().__init__()
def __call__(self, instance):
raise NotImplementedError
class Preprocess4Pretrain(Pipeline):
""" Pre-processing steps for pretraining transformer """
def __init__(self, max_pred, mask_prob, vocab_words, indexer, max_len=512):
super().__init__()
self.max_pred = max_pred # max tokens of prediction
self.mask_prob = mask_prob # masking probability
self.vocab_words = vocab_words # vocabulary (sub)words
self.indexer = indexer # function from token to token index
self.max_len = max_len
def __call__(self, instance):
is_next, tokens_a, tokens_b = instance
# -3 for special tokens [CLS], [SEP], [SEP]
truncate_tokens_pair(tokens_a, tokens_b, self.max_len - 3)
# Add Special Tokens
tokens = ['[CLS]'] + tokens_a + ['[SEP]'] + tokens_b + ['[SEP]']
segment_ids = [0]*(len(tokens_a)+2) + [1]*(len(tokens_b)+1)
input_mask = [1]*len(tokens)
# For masked Language Models
masked_tokens, masked_pos = [], []
# the number of prediction is sometimes less than max_pred when sequence is short
n_pred = min(self.max_pred, max(1, int(round(len(tokens)*self.mask_prob))))
# candidate positions of masked tokens
cand_pos = [i for i, token in enumerate(tokens)
if token != '[CLS]' and token != '[SEP]']
shuffle(cand_pos)
for pos in cand_pos[:n_pred]:
masked_tokens.append(tokens[pos])
masked_pos.append(pos)
if rand() < 0.8: # 80%
tokens[pos] = '[MASK]'
elif rand() < 0.5: # 10%
tokens[pos] = get_random_word(self.vocab_words)
# when n_pred < max_pred, we only calculate loss within n_pred
masked_weights = [1]*len(masked_tokens)
# Token Indexing
input_ids = self.indexer(tokens)
masked_ids = self.indexer(masked_tokens)
# Zero Padding
n_pad = self.max_len - len(input_ids)
input_ids.extend([0]*n_pad)
segment_ids.extend([0]*n_pad)
input_mask.extend([0]*n_pad)
# Zero Padding for masked target
if self.max_pred > n_pred:
n_pad = self.max_pred - n_pred
masked_ids.extend([0]*n_pad)
masked_pos.extend([0]*n_pad)
masked_weights.extend([0]*n_pad)
return (input_ids, segment_ids, input_mask, masked_ids, masked_pos, masked_weights, is_next)
class BertModel4Pretrain(nn.Module):
"Bert Model for Pretrain : Masked LM and next sentence classification"
def __init__(self, cfg):
super().__init__()
self.transformer = models.Transformer(cfg)
self.fc = nn.Linear(cfg.dim, cfg.dim)
self.activ1 = nn.Tanh()
self.linear = nn.Linear(cfg.dim, cfg.dim)
self.activ2 = models.gelu
self.norm = models.LayerNorm(cfg)
self.classifier = nn.Linear(cfg.dim, 2)
# decoder is shared with embedding layer
embed_weight = self.transformer.embed.tok_embed.weight
n_vocab, n_dim = embed_weight.size()
self.decoder = nn.Linear(n_dim, n_vocab, bias=False)
self.decoder.weight = embed_weight
self.decoder_bias = nn.Parameter(torch.zeros(n_vocab))
def forward(self, input_ids, segment_ids, input_mask, masked_pos):
h = self.transformer(input_ids, segment_ids, input_mask)
pooled_h = self.activ1(self.fc(h[:, 0]))
masked_pos = masked_pos[:, :, None].expand(-1, -1, h.size(-1))
h_masked = torch.gather(h, 1, masked_pos)
h_masked = self.norm(self.activ2(self.linear(h_masked)))
logits_lm = self.decoder(h_masked) + self.decoder_bias
logits_clsf = self.classifier(pooled_h)
return logits_lm, logits_clsf
def main(train_cfg='config/pretrain.json',
model_cfg='config/bert_base.json',
data_file='../tbc/books_large_all.txt',
model_file=None,
data_parallel=True,
vocab='../uncased_L-12_H-768_A-12/vocab.txt',
save_dir='../exp/bert/pretrain',
log_dir='../exp/bert/pretrain/runs',
max_len=512,
max_pred=20,
mask_prob=0.15):
cfg = train.Config.from_json(train_cfg)
model_cfg = models.Config.from_json(model_cfg)
set_seeds(cfg.seed)
tokenizer = tokenization.FullTokenizer(vocab_file=vocab, do_lower_case=True)
tokenize = lambda x: tokenizer.tokenize(tokenizer.convert_to_unicode(x))
pipeline = [Preprocess4Pretrain(max_pred,
mask_prob,
list(tokenizer.vocab.keys()),
tokenizer.convert_tokens_to_ids,
max_len)]
data_iter = SentPairDataLoader(data_file,
cfg.batch_size,
tokenize,
max_len,
pipeline=pipeline)
model = BertModel4Pretrain(model_cfg)
criterion1 = nn.CrossEntropyLoss(reduction='none')
criterion2 = nn.CrossEntropyLoss()
optimizer = optim.optim4GPU(cfg, model)
trainer = train.Trainer(cfg, model, data_iter, optimizer, save_dir, get_device())
writer = SummaryWriter(log_dir=log_dir) # for tensorboardX
def get_loss(model, batch, global_step): # make sure loss is tensor
input_ids, segment_ids, input_mask, masked_ids, masked_pos, masked_weights, is_next = batch
logits_lm, logits_clsf = model(input_ids, segment_ids, input_mask, masked_pos)
loss_lm = criterion1(logits_lm.transpose(1, 2), masked_ids) # for masked LM
loss_lm = (loss_lm*masked_weights.float()).mean()
loss_clsf = criterion2(logits_clsf, is_next) # for sentence classification
writer.add_scalars('data/scalar_group',
{'loss_lm': loss_lm.item(),
'loss_clsf': loss_clsf.item(),
'loss_total': (loss_lm + loss_clsf).item(),
'lr': optimizer.get_lr()[0],
},
global_step)
return loss_lm + loss_clsf
trainer.train(get_loss, model_file, None, data_parallel)
if __name__ == '__main__':
fire.Fire(main)