forked from dhlee347/pytorchic-bert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
93 lines (76 loc) · 2.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright 2018 Dong-Hyun Lee, Kakao Brain.
""" Utils Functions """
import os
import random
import logging
import numpy as np
import torch
def set_seeds(seed):
"set random seeds"
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_device():
"get device (CPU or GPU)"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
print("%s (%d GPUs)" % (device, n_gpu))
return device
def split_last(x, shape):
"split the last dimension to given shape"
shape = list(shape)
assert shape.count(-1) <= 1
if -1 in shape:
shape[shape.index(-1)] = int(x.size(-1) / -np.prod(shape))
return x.view(*x.size()[:-1], *shape)
def merge_last(x, n_dims):
"merge the last n_dims to a dimension"
s = x.size()
assert n_dims > 1 and n_dims < len(s)
return x.view(*s[:-n_dims], -1)
def find_sublist(haystack, needle):
"""Return the index at which the sequence needle appears in the
sequence haystack, or -1 if it is not found, using the Boyer-
Moore-Horspool algorithm. The elements of needle and haystack must
be hashable.
https://codereview.stackexchange.com/questions/19627/finding-sub-list
"""
h = len(haystack)
n = len(needle)
skip = {needle[i]: n - i - 1 for i in range(n - 1)}
i = n - 1
while i < h:
for j in range(n):
if haystack[i - j] != needle[-j - 1]:
i += skip.get(haystack[i], n)
break
else:
return i - n + 1
return -1
def truncate_tokens_pair(tokens_a, tokens_b, max_len):
while True:
if len(tokens_a) + len(tokens_b) <= max_len:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def get_random_word(vocab_words):
i = random.randint(0, len(vocab_words)-1)
return vocab_words[i]
def get_logger(name, log_path):
"get logger"
logger = logging.getLogger(name)
fomatter = logging.Formatter(
'[ %(levelname)s|%(filename)s:%(lineno)s] %(asctime)s > %(message)s')
if not os.path.isfile(log_path):
f = open(log_path, "w+")
fileHandler = logging.FileHandler(log_path)
fileHandler.setFormatter(fomatter)
logger.addHandler(fileHandler)
#streamHandler = logging.StreamHandler()
#streamHandler.setFormatter(fomatter)
#logger.addHandler(streamHandler)
logger.setLevel(logging.DEBUG)
return logger