forked from Saizan/cubical-demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPathPrelude.agda
272 lines (195 loc) · 12.8 KB
/
PathPrelude.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
{-# OPTIONS --cubical #-}
module PathPrelude where
open import Primitives public
open import Level
open import Data.Product using (Σ; _,_) renaming (proj₁ to fst; proj₂ to snd)
refl : ∀ {a} {A : Set a} {x : A} → Path x x
refl {x = x} = λ i → x
sym : ∀ {a} {A : Set a} → {x y : A} → Path x y → Path y x
sym p = \ i → p (~ i)
pathJ : ∀ {a}{p}{A : Set a}{x : A}(P : ∀ y → Path x y → Set p) → P x ((\ i -> x)) → ∀ y (p : Path x y) → P y p
pathJ P d _ p = primComp (λ i → P (p i) (\ j → p (i ∧ j))) i0 (\ _ → empty) d
pathJprop : ∀ {a}{p}{A : Set a}{x : A}(P : ∀ y → Path x y → Set p) → (d : P x ((\ i -> x))) → pathJ P d _ refl ≡ d
pathJprop {x = x} P d i = primComp (λ _ → P x refl) i (\ { j (i = i1) → d }) d
trans : ∀ {a} {A : Set a} → {x y z : A} → Path x y → Path y z → Path x z
trans {A = A} {x} {y} p q = \ i → primComp (λ j → A) (i ∨ ~ i)
(\ j → \ { (i = i1) → q j
; (i = i0) → x
}
)
(p i)
fun-ext : ∀ {a b} {A : Set a} {B : A → Set b} → {f g : (x : A) → B x}
→ (∀ x → Path (f x) (g x)) → Path f g
fun-ext p = λ i x → p x i
-- comp using only Path
compP : ∀ {a : Level} {A0 A1 : Set a} (A : Path A0 A1) → {φ : I} → (a0 : A i0) → (Partial (Σ A1 \ y → PathP (\ i → A i) a0 y) φ) → A i1
compP A {φ} a0 p = primComp (λ i → A i) φ (\ i o → p o .snd i) a0
-- fill using only Path
fillP : ∀ {a : Level} {A0 A1 : Set a} (A : Path A0 A1) → {φ : I} → (a0 : A i0) → (Partial (Σ A1 \ y → PathP (\ i → A i) a0 y) φ) → ∀ i → A i
fillP A {φ} a0 p j = primComp (λ i → A (i ∧ j)) (φ ∨ ~ j) (\ { i (φ = i1) → p itIsOne .snd (i ∧ j); i (j = i0) → a0 }) a0
reflId : ∀ {a} {A : Set a}{x : A} → Id x x
reflId {x = x} = conid i1 (λ _ → x)
Jdef : ∀ {a}{p}{A : Set a}{x : A}(P : ∀ y → Id x y → Set p) → (d : P x reflId) → J P d reflId ≡ d
Jdef P d = refl
fromPath : ∀ {A : Set}{x y : A} → Path x y -> Id x y
fromPath p = conid i0 (\ i → p i)
transId : ∀ {a} {A : Set a} → {x y z : A} → Id x y → Id y z → Id x z
transId {A = A} {x} {y} p = J (λ y _ → Id x y) p
congId : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) → ∀ {x y} → Id x y → Id (f x) (f y)
congId f {x} {y} = J (λ y _ → Id (f x) (f y)) reflId
fill : ∀ {a : I -> Level} (A : (i : I) → Set (a i)) (φ : I) → ((i : I) → Partial (A i) φ) → A i0 → (i : I) → A i
fill A φ u a0 i = unsafeComp (\ j → A (i ∧ j)) (φ ∨ ~ i) (\ j → unsafePOr φ (~ i) (u (i ∧ j)) \ { _ → a0 }) a0
singl : ∀ {l} {A : Set l} (a : A) -> Set l
singl {A = A} a = Σ A (\ x → a ≡ x)
contrSingl : ∀ {l} {A : Set l} {a b : A} (p : a ≡ b) → Path {A = singl a} (a , refl) (b , p)
contrSingl p = \ i → ((p i) , \ j → p (i ∧ j))
module Contr where
isContr : ∀ {a} → (A : Set a) → Set a
isContr A = Σ A (\ x → ∀ y → x ≡ y)
contr : ∀ {a} {A : Set a} → isContr A → (φ : I) → (u : Partial A φ) → A
contr {A = A} (c , p) φ u = primComp (\ _ → A) φ (λ i → \ o → p (u o) i) c
lemma : ∀ {a} {A : Set a}
→ (contr1 : ∀ φ → Partial A φ → A)
→ (contr2 : ∀ u → u ≡ (contr1 i1 \{_ → u}))
→ isContr A
lemma {A = A} contr1 contr2 = x , (λ y → let module M = R y in trans (contr2 x) (trans (\ i → M.v i) (sym (contr2 y)))) where
x = contr1 i0 empty
module R (y : A) (i : I) where
φ = ~ i ∨ i
u : Partial A φ
u = primPOr (~ i) i (\{_ → x}) (\{_ → y})
v = contr1 φ u
isContrProp : ∀ {a} {A : Set a} (h : isContr A) -> ∀ (x y : A) → x ≡ y
isContrProp {A = A} h a b = \ i → primComp (\ _ → A) _ (\ j → [ (~ i) ↦ (\{_ → snd h a j}) , i ↦ (\{_ → snd h b j}) ]) (fst h)
module Pres {la lb : I → _} {T : (i : I) → Set (lb i)}{A : (i : I) → Set (la i)} (f : ∀ i → T i → A i) (φ : I) (t : ∀ i → Partial (T i) φ)
(t0 : T i0 {- [ φ ↦ t i0 ] -}) where
c1 c2 : A i1
c1 = unsafeComp A φ (λ i → (\{_ → f i (t i itIsOne) })) (f i0 t0)
c2 = f i1 (unsafeComp T φ t t0)
a0 = f i0 t0
a : ∀ i → Partial (A i) φ
a i = (\{_ → f i ((t i) itIsOne) })
u : ∀ i → A i
u = fill A φ a a0
v : ∀ i → T i
v = fill T φ t t0
pres : Path c1 c2
pres = \ j → unsafeComp A (φ ∨ (j ∨ ~ j)) (λ i → primPOr φ ((j ∨ ~ j)) (a i) (primPOr j (~ j) (\{_ → f i (v i) }) (\{_ → u i }))) a0
module Equiv {l l'} (A : Set l)(B : Set l') where
isEquiv : (A -> B) → Set (l' ⊔ l)
isEquiv f = ∀ y → Contr.isContr (Σ A \ x → y ≡ f x)
Equiv = Σ _ isEquiv
equiv : (f : Equiv) → ∀ φ (t : Partial A φ) (a : B {- [ φ ↦ f t ] -}) → PartialP φ (\ o → Path a (fst f (t o)))
-> Σ A \ x → a ≡ fst f x -- [ φ ↦ (t , \ j → a) ]
equiv (f , [f]) φ t a p = Contr.contr ([f] a) φ \ o → t o , (\ i → p o i)
equiv1 : (f : Equiv) → ∀ φ (t : Partial A φ) (a : B {- [ φ ↦ f t ] -}) → PartialP φ (\ o → Path a (fst f (t o))) -> A
equiv1 f φ t a p = fst (equiv f φ t a p)
equiv2 : (f : Equiv) → ∀ φ (t : Partial A φ) (a : B {- [ φ ↦ f t ] -}) → (p : PartialP φ (\ o → Path a (fst f (t o))))
→ a ≡ fst f (equiv1 f φ t a p)
equiv2 f φ t a p = snd (equiv f φ t a p)
open Equiv public
{-# BUILTIN ISEQUIV isEquiv #-}
idEquiv : ∀ {a} {A : Set a} → Equiv A A
idEquiv = (λ x → x) , (λ y → (y , refl) , (λ y₁ → contrSingl (snd y₁)))
pathToEquiv : ∀ {l : I → _} (E : (i : I) → Set (l i)) → Equiv (E i0) (E i1)
pathToEquiv E = f
, (λ y → (g y
, (\ j → primComp E (~ j ∨ j) (\ i → [ ~ j ↦ (\{_ → v i y }) , j ↦ (\{_ → u i (g y) }) ]) (g y))) ,
prop-f-image y _ )
where
A = E i0
B = E i1
transp : ∀ {l : I → _} (E : (i : I) → Set (l i)) → E i0 → E i1
transp E x = primComp E i0 (\ _ → empty) x
f : A → B
f = transp E
g : B → A
g = transp (\ i → E (~ i))
u : (i : I) → A → E i
u i x = fill E i0 (\ _ → empty) x i
v : (i : I) → B → E i
v i y = fill (\ i → E (~ i)) i0 (\ _ → empty) y (~ i)
prop-f-image : (y : B) → (a b : Σ _ \ x → y ≡ f x) → a ≡ b
prop-f-image y (x0 , b0) (x1 , b1) = \ k → (w k) , (\ j → d j k)
where
w0 = \ (j : I) → primComp (\ i → E (~ i)) (~ j ∨ j) ((\ i → [ ~ j ↦ (\{_ → v (~ i) y }) , j ↦ (\{_ → u (~ i) x0 }) ])) (b0 j)
w1 = \ (j : I) → primComp (\ i → E (~ i)) (~ j ∨ j) ((\ i → [ ~ j ↦ (\{_ → v (~ i) y }) , j ↦ (\{_ → u (~ i) x1 }) ])) (b1 j)
t0 = \ (j : I) → fill (\ i → E (~ i)) (~ j ∨ j) ((\ i → [ ~ j ↦ (\{_ → v (~ i) y }) , j ↦ (\{_ → u (~ i) x0 }) ])) (b0 j)
t1 = \ (j : I) → fill (\ i → E (~ i)) (~ j ∨ j) ((\ i → [ ~ j ↦ (\{_ → v (~ i) y }) , j ↦ (\{_ → u (~ i) x1 }) ])) (b1 j)
w = \ (k : I) → primComp (λ _ → A) (~ k ∨ k) (\ j → [ ~ k ↦ (\{_ → w0 j }) , k ↦ (\{_ → w1 j }) ]) (g y)
t = \ (j k : I) → fill (λ _ → A) (~ k ∨ k) (\ j → [ ~ k ↦ (\{_ → w0 j }) , k ↦ (\{_ → w1 j }) ]) (g y) j
d = \ (j k : I) → primComp E ((~ k ∨ k) ∨ (~ j ∨ j)) ((\ i → [ ~ k ∨ k ↦ [ ~ k ↦ (\{_ → t0 j (~ i) }) , k ↦ (\{_ → t1 j (~ i) }) ]
, ~ j ∨ j ↦ [ ~ j ↦ (\{_ → v (i) y }) , j ↦ (\{_ → u (i) (w k) }) ] ])) (t j k)
pathToEquiv2 : ∀ {l : I → _} (E : (i : I) → Set (l i)) → _
pathToEquiv2 {l} E = snd (pathToEquiv E)
{-# BUILTIN PATHTOEQUIV pathToEquiv2 #-}
module GluePrims where
primitive
primGlue : ∀ {a b} (A : Set a) → ∀ φ → (T : Partial (Set b) φ) → (f : PartialP φ (λ o → T o → A))
→ (pf : PartialP φ (λ o → isEquiv (T o) A (f o))) → Set b
prim^glue : ∀ {a b} {A : Set a} {φ : I} {T : Partial (Set b) φ}
{f : PartialP φ (λ o → T o → A)}
{pf : PartialP φ (λ o → isEquiv (T o) A (f o))} →
PartialP φ T → A → primGlue A φ T f pf
prim^unglue : ∀ {a b} {A : Set a} {φ : I} {T : Partial (Set b) φ}
{f : PartialP φ (λ o → T o → A)}
{pf : PartialP φ (λ o → isEquiv (T o) A (f o))} →
primGlue A φ T f pf → A
module GluePrims' (dummy : Set₁) = GluePrims
open GluePrims' Set using () renaming (prim^glue to unsafeGlue) public
open GluePrims public renaming (prim^glue to glue; prim^unglue to unglue)
Glue : ∀ {a b} (A : Set a) → ∀ φ → (T : Partial (Set b) φ) (f : (PartialP φ \ o → Equiv (T o) A)) → Set _
Glue A φ T f = primGlue A φ T (\ o → fst (f o)) (\ o → snd (f o))
eqToPath' : ∀ {l} {A B : Set l} → Equiv A B → Path A B
eqToPath' {l} {A} {B} f = \ i → Glue B (~ i ∨ i) ([ ~ i ↦ (\ _ → A) , i ↦ (\ _ → B) ]) ([ ~ i ↦ (\{_ → f }) , i ↦ (\{_ → idEquiv }) ])
primitive
primFaceForall : (I → I) → I
module FR (φ : I -> I) where
δ = primFaceForall φ
postulate
∀e : IsOne δ → ∀ i → IsOne (φ i)
∀∨ : ∀ i → IsOne (φ i) → IsOne ((δ ∨ (φ i0 ∧ ~ i)) ∨ (φ i1 ∧ i))
module GlueIso {a b} {A : Set a} {φ : I} {T : Partial (Set b) φ} {f : (PartialP φ \ o → Equiv (T o) A)} where
going : PartialP φ (\ o → Glue A φ T f → T o)
going = (\{_ → (\ x → x) })
back : PartialP φ (\ o → T o → Glue A φ T f)
back = (\{_ → (\ x → x) })
lemma : ∀ (b : PartialP φ (\ _ → Glue A φ T f)) → PartialP φ \ o → Path (unglue {φ = φ} (b o)) (fst (f o) (going o (b o)))
lemma b = (\{_ → refl })
module CompGlue {la lb : I → _} (A : (i : I) → Set (la i)) (φ : I -> I) (T : ∀ i → Partial (Set (lb i)) (φ i))
(f : ∀ i → PartialP (φ i) \ o → Equiv (T i o) (A i)) where
B : (i : I) -> Set (lb i)
B = \ i → Glue (A i) (φ i) (T i) (f i)
module Local (ψ : I) (b : ∀ i → Partial (B i) ψ) (b0 : B i0 {- [ ψ ↦ b i0 ] -}) where
a : ∀ i → Partial (A i) ψ
a i = \ o → unglue {φ = φ i} (b i o)
module Forall (δ : I) (∀e : IsOne δ → ∀ i → IsOne (φ i)) where
a0 : A i0
a0 = unglue {φ = φ i0} b0
a₁' = unsafeComp A ψ a a0
t₁' : PartialP δ (\ o → T i1 (∀e o i1))
t₁' = \ o → unsafeComp (λ i → T i (∀e o i)) ψ (\ i o' → GlueIso.going {φ = φ i} (∀e o i) (b i o')) (GlueIso.going {φ = φ i0} (∀e o i0) b0)
w : PartialP δ _
w = \ o → Pres.pres (\ i → fst (f i (∀e o i))) ψ (λ i x → GlueIso.going {φ = φ i} (∀e o i) (b i x)) (GlueIso.going {φ = φ i0} (∀e o i0) b0)
a₁'' = unsafeComp (\ _ → A i1) (δ ∨ ψ) (\ j → unsafePOr δ ψ (\ o → w o j) (a i1)) a₁'
g : PartialP (φ i1) _
g o = (equiv (T i1 _) (A i1) (f i1 o) (δ ∨ ψ) (unsafePOr δ ψ t₁' (\ o' → GlueIso.going {φ = φ i1} o (b i1 o'))) a₁''
( (unsafePOr δ ψ (\{ (δ = i1) → refl }) ((\{ (ψ = i1) → GlueIso.lemma {φ = φ i1} (\ _ → b i1 itIsOne) o }) ) ) ))
-- TODO figure out why we need (δ = i1) and (ψ = i1) here
t₁ : PartialP (φ i1) _
t₁ o = fst (g o)
α : PartialP (φ i1) _
α o = snd (g o)
a₁ = unsafeComp (\ j → A i1) (φ i1 ∨ ψ) (\ j → unsafePOr (φ i1) ψ (\ o → α o j) (a i1)) a₁''
b₁ : Glue _ (φ i1) (T i1) (f i1)
b₁ = unsafeGlue {φ = φ i1} t₁ a₁
b1 = Forall.b₁ (FR.δ φ) (FR.∀e φ)
compGlue : {la lb : I → _} (A : (i : I) → Set (la i)) (φ : I -> I) (T : ∀ i → Partial (Set (lb i)) (φ i))
(f : ∀ i → PartialP (φ i) \ o → (T i o) → (A i)) →
(pf : ∀ i → PartialP (φ i) (λ o → isEquiv (T i o) (A i) (f i o))) →
let
B : (i : I) -> Set (lb i)
B = \ i → primGlue (A i) (φ i) (T i) (f i) (pf i)
in (ψ : I) (b : ∀ i → Partial (B i) ψ) (b0 : B i0) → B i1
compGlue A φ T f pf ψ b b0 = CompGlue.Local.b1 A φ T (λ i p → (f i p) , (pf i p)) ψ b b0
{-# BUILTIN COMPGLUE compGlue #-}