-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathkcenters.py
50 lines (41 loc) · 1.31 KB
/
kcenters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import random
from utils import distance
class KCenters(object):
def __init__(self, k=5):
"""
k (int) : Number of centers to be identified
"""
self.k = k
def fit(self, data):
"""
Performs the k-centers algorithm.
Args:
data (list) : Points in the dataset
"""
# Randomly choosing an initial center
#random.seed(42)
self.data = data
self.centers = [int(np.random.randint(0, len(self.data), 1))]
self.costs = []
while True:
# Remaining points in the data set
rem_points = list(set(range(0, len(self.data))) - set(self.centers))
# Finding the point which has the closest center most far-off
point_center = [(i, min([distance(self.data[i], self.data[j]) for j in self.centers])) for i in rem_points]
point_center = sorted(point_center, key=lambda x: x[1], reverse=True)
self.costs.append(point_center[0][1])
if len(self.centers) < self.k:
self.centers.append(point_center[0][0])
else:
break
return
def assign(self):
"""
Assigning every point in the dataset to the closest center.
Returns:
mapping (list) : tuples of the form (point, center)
"""
mapping = [(i, sorted([(j, distance(self.data[i], self.data[j])) for j in self.centers], key=lambda x: x[1],
reverse=False)[0][0]) for i in range(len(self.data))]
return mapping