-
Notifications
You must be signed in to change notification settings - Fork 164
/
Copy pathrnn.py
604 lines (501 loc) · 22.7 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
""" Vanilla RNN
@author Graham Taylor
"""
import numpy as np
import theano
import theano.tensor as T
from sklearn.base import BaseEstimator
import logging
import time
import os
import datetime
import cPickle as pickle
logger = logging.getLogger(__name__)
import matplotlib.pyplot as plt
plt.ion()
mode = theano.Mode(linker='cvm')
#mode = 'DEBUG_MODE'
class RNN(object):
""" Recurrent neural network class
Supported output types:
real : linear output units, use mean-squared error
binary : binary output units, use cross-entropy error
softmax : single softmax out, use cross-entropy error
"""
def __init__(self, input, n_in, n_hidden, n_out, activation=T.tanh,
output_type='real', use_symbolic_softmax=False):
self.input = input
self.activation = activation
self.output_type = output_type
# when using HF, SoftmaxGrad.grad is not implemented
# use a symbolic softmax which is slightly slower than T.nnet.softmax
# See: http://groups.google.com/group/theano-dev/browse_thread/
# thread/3930bd5a6a67d27a
if use_symbolic_softmax:
def symbolic_softmax(x):
e = T.exp(x)
return e / T.sum(e, axis=1).dimshuffle(0, 'x')
self.softmax = symbolic_softmax
else:
self.softmax = T.nnet.softmax
# recurrent weights as a shared variable
W_init = np.asarray(np.random.uniform(size=(n_hidden, n_hidden),
low=-.01, high=.01),
dtype=theano.config.floatX)
self.W = theano.shared(value=W_init, name='W')
# input to hidden layer weights
W_in_init = np.asarray(np.random.uniform(size=(n_in, n_hidden),
low=-.01, high=.01),
dtype=theano.config.floatX)
self.W_in = theano.shared(value=W_in_init, name='W_in')
# hidden to output layer weights
W_out_init = np.asarray(np.random.uniform(size=(n_hidden, n_out),
low=-.01, high=.01),
dtype=theano.config.floatX)
self.W_out = theano.shared(value=W_out_init, name='W_out')
h0_init = np.zeros((n_hidden,), dtype=theano.config.floatX)
self.h0 = theano.shared(value=h0_init, name='h0')
bh_init = np.zeros((n_hidden,), dtype=theano.config.floatX)
self.bh = theano.shared(value=bh_init, name='bh')
by_init = np.zeros((n_out,), dtype=theano.config.floatX)
self.by = theano.shared(value=by_init, name='by')
self.params = [self.W, self.W_in, self.W_out, self.h0,
self.bh, self.by]
# for every parameter, we maintain it's last update
# the idea here is to use "momentum"
# keep moving mostly in the same direction
self.updates = {}
for param in self.params:
init = np.zeros(param.get_value(borrow=True).shape,
dtype=theano.config.floatX)
self.updates[param] = theano.shared(init)
# recurrent function (using tanh activation function) and linear output
# activation function
def step(x_t, h_tm1):
h_t = self.activation(T.dot(x_t, self.W_in) + \
T.dot(h_tm1, self.W) + self.bh)
y_t = T.dot(h_t, self.W_out) + self.by
return h_t, y_t
# the hidden state `h` for the entire sequence, and the output for the
# entire sequence `y` (first dimension is always time)
[self.h, self.y_pred], _ = theano.scan(step,
sequences=self.input,
outputs_info=[self.h0, None])
# L1 norm ; one regularization option is to enforce L1 norm to
# be small
self.L1 = 0
self.L1 += abs(self.W.sum())
self.L1 += abs(self.W_in.sum())
self.L1 += abs(self.W_out.sum())
# square of L2 norm ; one regularization option is to enforce
# square of L2 norm to be small
self.L2_sqr = 0
self.L2_sqr += (self.W ** 2).sum()
self.L2_sqr += (self.W_in ** 2).sum()
self.L2_sqr += (self.W_out ** 2).sum()
if self.output_type == 'real':
self.loss = lambda y: self.mse(y)
elif self.output_type == 'binary':
# push through sigmoid
self.p_y_given_x = T.nnet.sigmoid(self.y_pred) # apply sigmoid
self.y_out = T.round(self.p_y_given_x) # round to {0,1}
self.loss = lambda y: self.nll_binary(y)
elif self.output_type == 'softmax':
# push through softmax, computing vector of class-membership
# probabilities in symbolic form
self.p_y_given_x = self.softmax(self.y_pred)
# compute prediction as class whose probability is maximal
self.y_out = T.argmax(self.p_y_given_x, axis=-1)
self.loss = lambda y: self.nll_multiclass(y)
else:
raise NotImplementedError
def mse(self, y):
# error between output and target
return T.mean((self.y_pred - y) ** 2)
def nll_binary(self, y):
# negative log likelihood based on binary cross entropy error
return T.mean(T.nnet.binary_crossentropy(self.p_y_given_x, y))
def nll_multiclass(self, y):
# negative log likelihood based on multiclass cross entropy error
# y.shape[0] is (symbolically) the number of rows in y, i.e.,
# number of time steps (call it T) in the sequence
# T.arange(y.shape[0]) is a symbolic vector which will contain
# [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of
# Log-Probabilities (call it LP) with one row per example and
# one column per class LP[T.arange(y.shape[0]),y] is a vector
# v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ...,
# LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is
# the mean (across minibatch examples) of the elements in v,
# i.e., the mean log-likelihood across the minibatch.
return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])
def errors(self, y):
"""Return a float representing the number of errors in the sequence
over the total number of examples in the sequence ; zero one
loss over the size of the sequence
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label
"""
# check if y has same dimension of y_pred
if y.ndim != self.y_out.ndim:
raise TypeError('y should have the same shape as self.y_out',
('y', y.type, 'y_out', self.y_out.type))
if self.output_type in ('binary', 'softmax'):
# check if y is of the correct datatype
if y.dtype.startswith('int'):
# the T.neq operator returns a vector of 0s and 1s, where 1
# represents a mistake in prediction
return T.mean(T.neq(self.y_out, y))
else:
raise NotImplementedError()
class MetaRNN(BaseEstimator):
def __init__(self, n_in=5, n_hidden=50, n_out=5, learning_rate=0.01,
n_epochs=100, L1_reg=0.00, L2_reg=0.00, learning_rate_decay=1,
activation='tanh', output_type='real',
final_momentum=0.9, initial_momentum=0.5,
momentum_switchover=5,
use_symbolic_softmax=False):
self.n_in = int(n_in)
self.n_hidden = int(n_hidden)
self.n_out = int(n_out)
self.learning_rate = float(learning_rate)
self.learning_rate_decay = float(learning_rate_decay)
self.n_epochs = int(n_epochs)
self.L1_reg = float(L1_reg)
self.L2_reg = float(L2_reg)
self.activation = activation
self.output_type = output_type
self.initial_momentum = float(initial_momentum)
self.final_momentum = float(final_momentum)
self.momentum_switchover = int(momentum_switchover)
self.use_symbolic_softmax = use_symbolic_softmax
self.ready()
def ready(self):
# input (where first dimension is time)
self.x = T.matrix()
# target (where first dimension is time)
if self.output_type == 'real':
self.y = T.matrix(name='y', dtype=theano.config.floatX)
elif self.output_type == 'binary':
self.y = T.matrix(name='y', dtype='int32')
elif self.output_type == 'softmax': # only vector labels supported
self.y = T.vector(name='y', dtype='int32')
else:
raise NotImplementedError
# initial hidden state of the RNN
self.h0 = T.vector()
# learning rate
self.lr = T.scalar()
if self.activation == 'tanh':
activation = T.tanh
elif self.activation == 'sigmoid':
activation = T.nnet.sigmoid
elif self.activation == 'relu':
activation = lambda x: x * (x > 0)
elif self.activation == 'cappedrelu':
activation = lambda x: T.minimum(x * (x > 0), 6)
else:
raise NotImplementedError
self.rnn = RNN(input=self.x, n_in=self.n_in,
n_hidden=self.n_hidden, n_out=self.n_out,
activation=activation, output_type=self.output_type,
use_symbolic_softmax=self.use_symbolic_softmax)
if self.output_type == 'real':
self.predict = theano.function(inputs=[self.x, ],
outputs=self.rnn.y_pred,
mode=mode)
elif self.output_type == 'binary':
self.predict_proba = theano.function(inputs=[self.x, ],
outputs=self.rnn.p_y_given_x, mode=mode)
self.predict = theano.function(inputs=[self.x, ],
outputs=T.round(self.rnn.p_y_given_x),
mode=mode)
elif self.output_type == 'softmax':
self.predict_proba = theano.function(inputs=[self.x, ],
outputs=self.rnn.p_y_given_x, mode=mode)
self.predict = theano.function(inputs=[self.x, ],
outputs=self.rnn.y_out, mode=mode)
else:
raise NotImplementedError
def shared_dataset(self, data_xy):
""" Load the dataset into shared variables """
data_x, data_y = data_xy
shared_x = theano.shared(np.asarray(data_x,
dtype=theano.config.floatX))
shared_y = theano.shared(np.asarray(data_y,
dtype=theano.config.floatX))
if self.output_type in ('binary', 'softmax'):
return shared_x, T.cast(shared_y, 'int32')
else:
return shared_x, shared_y
def __getstate__(self):
""" Return state sequence."""
params = self._get_params() # parameters set in constructor
weights = [p.get_value() for p in self.rnn.params]
state = (params, weights)
return state
def _set_weights(self, weights):
""" Set fittable parameters from weights sequence.
Parameters must be in the order defined by self.params:
W, W_in, W_out, h0, bh, by
"""
i = iter(weights)
for param in self.rnn.params:
param.set_value(i.next())
def __setstate__(self, state):
""" Set parameters from state sequence.
Parameters must be in the order defined by self.params:
W, W_in, W_out, h0, bh, by
"""
params, weights = state
self.set_params(**params)
self.ready()
self._set_weights(weights)
def save(self, fpath='.', fname=None):
""" Save a pickled representation of Model state. """
fpathstart, fpathext = os.path.splitext(fpath)
if fpathext == '.pkl':
# User supplied an absolute path to a pickle file
fpath, fname = os.path.split(fpath)
elif fname is None:
# Generate filename based on date
date_obj = datetime.datetime.now()
date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S')
class_name = self.__class__.__name__
fname = '%s.%s.pkl' % (class_name, date_str)
fabspath = os.path.join(fpath, fname)
logger.info("Saving to %s ..." % fabspath)
file = open(fabspath, 'wb')
state = self.__getstate__()
pickle.dump(state, file, protocol=pickle.HIGHEST_PROTOCOL)
file.close()
def load(self, path):
""" Load model parameters from path. """
logger.info("Loading from %s ..." % path)
file = open(path, 'rb')
state = pickle.load(file)
self.__setstate__(state)
file.close()
def fit(self, X_train, Y_train, X_test=None, Y_test=None,
validation_frequency=100):
""" Fit model
Pass in X_test, Y_test to compute test error and report during
training.
X_train : ndarray (n_seq x n_steps x n_in)
Y_train : ndarray (n_seq x n_steps x n_out)
validation_frequency : int
in terms of number of sequences (or number of weight updates)
"""
if X_test is not None:
assert(Y_test is not None)
self.interactive = True
test_set_x, test_set_y = self.shared_dataset((X_test, Y_test))
else:
self.interactive = False
train_set_x, train_set_y = self.shared_dataset((X_train, Y_train))
n_train = train_set_x.get_value(borrow=True).shape[0]
if self.interactive:
n_test = test_set_x.get_value(borrow=True).shape[0]
######################
# BUILD ACTUAL MODEL #
######################
logger.info('... building the model')
index = T.lscalar('index') # index to a case
# learning rate (may change)
l_r = T.scalar('l_r', dtype=theano.config.floatX)
mom = T.scalar('mom', dtype=theano.config.floatX) # momentum
cost = self.rnn.loss(self.y) \
+ self.L1_reg * self.rnn.L1 \
+ self.L2_reg * self.rnn.L2_sqr
compute_train_error = theano.function(inputs=[index, ],
outputs=self.rnn.loss(self.y),
givens={
self.x: train_set_x[index],
self.y: train_set_y[index]},
mode=mode)
if self.interactive:
compute_test_error = theano.function(inputs=[index, ],
outputs=self.rnn.loss(self.y),
givens={
self.x: test_set_x[index],
self.y: test_set_y[index]},
mode=mode)
# compute the gradient of cost with respect to theta = (W, W_in, W_out)
# gradients on the weights using BPTT
gparams = []
for param in self.rnn.params:
gparam = T.grad(cost, param)
gparams.append(gparam)
updates = {}
for param, gparam in zip(self.rnn.params, gparams):
weight_update = self.rnn.updates[param]
upd = mom * weight_update - l_r * gparam
updates[weight_update] = upd
updates[param] = param + upd
# compiling a Theano function `train_model` that returns the
# cost, but in the same time updates the parameter of the
# model based on the rules defined in `updates`
train_model = theano.function(inputs=[index, l_r, mom],
outputs=cost,
updates=updates,
givens={
self.x: train_set_x[index],
self.y: train_set_y[index]},
mode=mode)
###############
# TRAIN MODEL #
###############
logger.info('... training')
epoch = 0
while (epoch < self.n_epochs):
epoch = epoch + 1
for idx in xrange(n_train):
effective_momentum = self.final_momentum \
if epoch > self.momentum_switchover \
else self.initial_momentum
example_cost = train_model(idx, self.learning_rate,
effective_momentum)
# iteration number (how many weight updates have we made?)
# epoch is 1-based, index is 0 based
iter = (epoch - 1) * n_train + idx + 1
if iter % validation_frequency == 0:
# compute loss on training set
train_losses = [compute_train_error(i)
for i in xrange(n_train)]
this_train_loss = np.mean(train_losses)
if self.interactive:
test_losses = [compute_test_error(i)
for i in xrange(n_test)]
this_test_loss = np.mean(test_losses)
logger.info('epoch %i, seq %i/%i, tr loss %f '
'te loss %f lr: %f' % \
(epoch, idx + 1, n_train,
this_train_loss, this_test_loss, self.learning_rate))
else:
logger.info('epoch %i, seq %i/%i, train loss %f '
'lr: %f' % \
(epoch, idx + 1, n_train, this_train_loss,
self.learning_rate))
self.learning_rate *= self.learning_rate_decay
def test_real():
""" Test RNN with real-valued outputs. """
n_hidden = 10
n_in = 5
n_out = 3
n_steps = 10
n_seq = 100
np.random.seed(0)
# simple lag test
seq = np.random.randn(n_seq, n_steps, n_in)
targets = np.zeros((n_seq, n_steps, n_out))
targets[:, 1:, 0] = seq[:, :-1, 3] # delayed 1
targets[:, 1:, 1] = seq[:, :-1, 2] # delayed 1
targets[:, 2:, 2] = seq[:, :-2, 0] # delayed 2
targets += 0.01 * np.random.standard_normal(targets.shape)
model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
learning_rate=0.001, learning_rate_decay=0.999,
n_epochs=400, activation='tanh')
model.fit(seq, targets, validation_frequency=1000)
plt.close('all')
fig = plt.figure()
ax1 = plt.subplot(211)
plt.plot(seq[0])
ax1.set_title('input')
ax2 = plt.subplot(212)
true_targets = plt.plot(targets[0])
guess = model.predict(seq[0])
guessed_targets = plt.plot(guess, linestyle='--')
for i, x in enumerate(guessed_targets):
x.set_color(true_targets[i].get_color())
ax2.set_title('solid: true output, dashed: model output')
def test_binary(multiple_out=False, n_epochs=250):
""" Test RNN with binary outputs. """
n_hidden = 10
n_in = 5
if multiple_out:
n_out = 2
else:
n_out = 1
n_steps = 10
n_seq = 100
np.random.seed(0)
# simple lag test
seq = np.random.randn(n_seq, n_steps, n_in)
targets = np.zeros((n_seq, n_steps, n_out))
# whether lag 1 (dim 3) is greater than lag 2 (dim 0)
targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0])
if multiple_out:
# whether product of lag 1 (dim 4) and lag 1 (dim 2)
# is less than lag 2 (dim 0)
targets[:, 2:, 1] = np.cast[np.int](
(seq[:, 1:-1, 4] * seq[:, 1:-1, 2]) > seq[:, :-2, 0])
model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
learning_rate=0.001, learning_rate_decay=0.999,
n_epochs=n_epochs, activation='tanh', output_type='binary')
model.fit(seq, targets, validation_frequency=1000)
seqs = xrange(10)
plt.close('all')
for seq_num in seqs:
fig = plt.figure()
ax1 = plt.subplot(211)
plt.plot(seq[seq_num])
ax1.set_title('input')
ax2 = plt.subplot(212)
true_targets = plt.step(xrange(n_steps), targets[seq_num], marker='o')
guess = model.predict_proba(seq[seq_num])
guessed_targets = plt.step(xrange(n_steps), guess)
plt.setp(guessed_targets, linestyle='--', marker='d')
for i, x in enumerate(guessed_targets):
x.set_color(true_targets[i].get_color())
ax2.set_ylim((-0.1, 1.1))
ax2.set_title('solid: true output, dashed: model output (prob)')
def test_softmax(n_epochs=250):
""" Test RNN with softmax outputs. """
n_hidden = 10
n_in = 5
n_steps = 10
n_seq = 100
n_classes = 3
n_out = n_classes # restricted to single softmax per time step
np.random.seed(0)
# simple lag test
seq = np.random.randn(n_seq, n_steps, n_in)
targets = np.zeros((n_seq, n_steps), dtype=np.int)
thresh = 0.5
# if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh
# class 1
# if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh
# class 2
# if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh
# class 0
targets[:, 2:][seq[:, 1:-1, 3] > seq[:, :-2, 0] + thresh] = 1
targets[:, 2:][seq[:, 1:-1, 3] < seq[:, :-2, 0] - thresh] = 2
#targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0])
model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
learning_rate=0.001, learning_rate_decay=0.999,
n_epochs=n_epochs, activation='tanh',
output_type='softmax', use_symbolic_softmax=False)
model.fit(seq, targets, validation_frequency=1000)
seqs = xrange(10)
plt.close('all')
for seq_num in seqs:
fig = plt.figure()
ax1 = plt.subplot(211)
plt.plot(seq[seq_num])
ax1.set_title('input')
ax2 = plt.subplot(212)
# blue line will represent true classes
true_targets = plt.step(xrange(n_steps), targets[seq_num], marker='o')
# show probabilities (in b/w) output by model
guess = model.predict_proba(seq[seq_num])
guessed_probs = plt.imshow(guess.T, interpolation='nearest',
cmap='gray')
ax2.set_title('blue: true class, grayscale: probs assigned by model')
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
t0 = time.time()
test_real()
# problem takes more epochs to solve
#test_binary(multiple_out=True, n_epochs=2400)
#test_softmax(n_epochs=250)
print "Elapsed time: %f" % (time.time() - t0)