-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserving.py
94 lines (70 loc) · 2.29 KB
/
serving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import gradio as gr
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
MODEL = 'gyupro/Koalpaca-Translation-KR2EN'
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.float16,
device_map='cuda:0'
)
model.eval()
pipe = pipeline(
"text-generation",
model=model,
tokenizer=AutoTokenizer.from_pretrained(MODEL),
)
def answer(state, state_chatbot, text):
ans = pipe(
f"### source: {text}\n\n### target:",
do_sample=False,
max_new_tokens=2048,
temperature=0.7,
top_p=0.9,
return_full_text=False,
eos_token_id=2,
)
msg = ans[0]["generated_text"]
if "###" in msg:
msg = msg.split("###")[0]
new_state = [{"role": "이전 질문", "content": text}, {"role": "이전 답변", "content": msg}]
state = state + new_state
state_chatbot = state_chatbot + [(text, msg)]
print(state)
print(state_chatbot)
return state, state_chatbot, state_chatbot
with gr.Blocks(css="#chatbot .overflow-y-auto{height:750px}") as demo:
state = gr.State(
[
{
"role": "맥락",
"content": "영어번역 모델.",
},
{"role": "명령어", "content": "친절한 AI 챗봇인 ChatKoAlpaca 로서 답변을 합니다."},
{
"role": "명령어",
"content": "인사에는 짧고 간단한 친절한 인사로 답하고, 아래 대화에 간단하고 짧게 답해주세요.",
},
]
)
state_chatbot = gr.State([])
with gr.Row():
gr.HTML(
"""<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div>
<h1>Koalpaca-Translation-KR2EN</h1>
</div>
<div>
Enter korean sentence to be translated
</div>
</div>"""
)
with gr.Row():
chatbot = gr.Chatbot(elem_id="chatbot")
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Send a message...").style(
container=False
)
txt.submit(answer, [state, state_chatbot, txt], [state, state_chatbot, chatbot])
txt.submit(lambda: "", None, txt)
demo.launch(debug=True, server_name="0.0.0.0")