-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathsentiment_score_vader.py
41 lines (33 loc) · 1.57 KB
/
sentiment_score_vader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""Data recipe to get sentiment score using vader"""
from typing import Union, List
from h2oaicore.data import CustomData
import datatable as dt
import numpy as np
import pandas as pd
# text column name to get the sentiment score
text_colnames = ["Description"]
# output dataset name
output_dataset_name = "df_with_vader_sentiment"
_global_modules_needed_by_name = ["vaderSentiment"]
class SentimentScoreClass(CustomData):
@staticmethod
def create_data(X: dt.Frame = None) -> Union[str, List[str],
dt.Frame, List[dt.Frame],
np.ndarray, List[np.ndarray],
pd.DataFrame, List[pd.DataFrame]]:
# exit gracefully if method is called as a data upload rather than data modify
if X is None:
return []
import os
from h2oaicore.systemutils import config
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
X = dt.Frame(X).to_pandas()
for text_colname in text_colnames:
X["sentiment_vader_dai_" + text_colname] = X[text_colname].astype(str).fillna("NA").apply(
lambda x: SentimentIntensityAnalyzer().polarity_scores(x)['compound'])
temp_path = os.path.join(config.data_directory, config.contrib_relative_directory)
os.makedirs(temp_path, exist_ok=True)
# Save files to disk
file_train = os.path.join(temp_path, output_dataset_name + ".csv")
X.to_csv(file_train, index=False)
return [file_train]