-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathinterface.py
223 lines (176 loc) · 6.92 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import cv2, time
import numpy as np
import sys
def resize(*args, **kwargs):
return cv2.resize(*args, **kwargs)
def moveWindow(*args,**kwargs):
return
def imshow(*args,**kwargs):
return cv2.imshow(*args,**kwargs)
def destroyWindow(*args,**kwargs):
return cv2.destroyWindow(*args,**kwargs)
def waitKey(*args,**kwargs):
return cv2.waitKey(*args,**kwargs)
"""
The rest of this file defines some GUI plotting functionality. There are plenty
of other ways to do simple x-y data plots in python, but this application uses
cv2.imshow to do real-time data plotting and handle user interaction.
This is entirely independent of the data calculation functions, so it can be
replaced in the GUI.py application easily.
"""
def combine(left, right):
"""Stack images horizontally.
"""
h = max(left.shape[0], right.shape[0])
w = left.shape[1] + right.shape[1]
hoff = left.shape[0]
shape = list(left.shape)
shape[0] = h
shape[1] = w
comb = np.zeros(tuple(shape),left.dtype)
# left will be on left, aligned top, with right on right
comb[:left.shape[0],:left.shape[1]] = left
comb[:right.shape[0],left.shape[1]:] = right
return comb
def peakdet(v, delta, x = None):
"""
Converted from MATLAB script at http://billauer.co.il/peakdet.html
Returns two arrays
function [maxtab, mintab]=peakdet(v, delta, x)
%PEAKDET Detect peaks in a vector
% [MAXTAB, MINTAB] = PEAKDET(V, DELTA) finds the local
% maxima and minima ("peaks") in the vector V.
% MAXTAB and MINTAB consists of two columns. Column 1
% contains indices in V, and column 2 the found values.
%
% With [MAXTAB, MINTAB] = PEAKDET(V, DELTA, X) the indices
% in MAXTAB and MINTAB are replaced with the corresponding
% X-values.
%
% A point is considered a maximum peak if it has the maximal
% value, and was preceded (to the left) by a value lower by
% DELTA.
% Eli Billauer, 3.4.05 (Explicitly not copyrighted).
% This function is released to the public domain; Any use is allowed.
"""
maxtab = []
mintab = []
if x is None:
x = np.arange(len(v))
v = np.asarray(v)
if len(v) != len(x):
sys.exit('Input vectors v and x must have same length')
if not np.isscalar(delta):
sys.exit('Input argument delta must be a scalar')
if delta <= 0:
sys.exit('Input argument delta must be positive')
mn, mx = np.Inf, -np.Inf
mnpos, mxpos = np.NaN, np.NaN
lookformax = True
for i in np.arange(len(v)):
this = v[i]
if this > mx:
mx = this
mxpos = x[i]
if this < mn:
mn = this
mnpos = x[i]
if lookformax:
if this < mx-delta:
maxtab.append((mxpos, mx))
mn = this
mnpos = x[i]
lookformax = False
else:
if this > mn+delta:
mintab.append((mnpos, mn))
mx = this
mxpos = x[i]
lookformax = True
return np.array(maxtab), np.array(mintab)
def plotXY(data,size = (480,640),margin = 25,name = "data",labels=[], skip = [],
showmax = [], bg = None,label_ndigits = [], showmax_digits=[]):
#----------
mix = []
maxtab, mintab = peakdet(data[0][1], 0.3) #this delta is found by testing
#maxtab[0] contains the index of max value, maxtab[1] contains the max values
if(len(maxtab)>0 and len(mintab)>0):
mix = np.append(maxtab[...,0],mintab[...,0])
mix = np.sort(mix)
mix = mix.astype(int)
#-----------
for x,y in data:
if len(x) < 2 or len(y) < 2:
return
n_plots = len(data)
w = float(size[1])
h = size[0]/float(n_plots)
z = np.zeros((size[0],size[1],3))
if isinstance(bg,np.ndarray):
wd = int(bg.shape[1]/bg.shape[0]*h )
bg = cv2.resize(bg,(wd,int(h)))
if len(bg.shape) == 3:
r = combine(bg[:,:,0],z[:,:,0])
g = combine(bg[:,:,1],z[:,:,1])
b = combine(bg[:,:,2],z[:,:,2])
else:
r = combine(bg,z[:,:,0])
g = combine(bg,z[:,:,1])
b = combine(bg,z[:,:,2])
z = cv2.merge([r,g,b])[:,:-wd,]
i = 0
P = []
for x,y in data:
x = np.array(x)
y = -np.array(y)
xx = (w-2*margin)*(x - x.min()) / (x.max() - x.min())+margin
yy = (h-2*margin)*(y - y.min()) / (y.max() - y.min())+margin + i*h
mx = max(yy)
if labels:
if labels[i]:
for ii in range(len(x)):
if ii%skip[i] == 0:
col = (255,255,255)
col2 = (255,0,0)
ss = '{0:.%sf}' % label_ndigits[i]
ss = ss.format(x[ii])
cv2.putText(z,ss,(int(xx[ii]),int((i+1)*h)),
cv2.FONT_HERSHEY_PLAIN,1,col)
if showmax:
if showmax[i]:
col = (0,255,0)
ii = np.argmax(-y)
ss = '{0:.%sf} %s' % (showmax_digits[i], showmax[i])
ss = ss.format(x[ii])
#"%0.0f %s" % (x[ii], showmax[i])
cv2.putText(z,ss,(int(xx[ii]),int((yy[ii]))),
cv2.FONT_HERSHEY_PLAIN,2,col)
try:
pts = np.array([[x_, y_] for x_, y_ in zip(xx,yy)],np.int32)
i+=1
P.append(pts)
except ValueError:
pass #temporary
"""
#Polylines seems to have some trouble rendering multiple polys for some people
for p in P:
cv2.polylines(z, [p], False, (255,255,255),1)
"""
#hack-y alternative:
for p in P:
m = []
for i in range(len(p)-1):
cv2.line(z,tuple(p[i]),tuple(p[i+1]), (255,255,255),1)
#draw the max and min points
# if len(maxtab>0) and i in maxtab[:,0]:
# cv2.circle(z,tuple(p[i]), 5, (255, 255, 0), -1)
# if len(mintab>0) and i in mintab[:,0]:
# cv2.circle(z,tuple(p[i]), 5, (0, 0, 255), -1)
# if i in mix:
# m.append(p[i])
# for ii in range(len(m)-1):
# cv2.line(z, tuple(m[ii]), tuple(m[ii+1]),(255,255,255),1)
# for p in P[mix]:
# for i in range(len(mix)-1):
# cv2.line(z, tuple(p[i]), tuple(p[i+1]),(255,255,255),5)
cv2.imshow(name,z)