forked from wenbowen123/catgrasp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.py
501 lines (412 loc) · 15.5 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import open3d as o3d
import os, sys, time,torch,pickle,trimesh,yaml
from scipy.spatial import ConvexHull
from uuid import uuid4
import cv2
from PIL import Image, ImageDraw
import numpy as np
import multiprocessing as mp
import math,glob,re,copy
from transformations import *
from scipy.spatial import cKDTree
from collections import OrderedDict
place_pose_dict = {} # Placement pose relative to placeholder, a pair of pose before and after place
place_pose_dict['nut'] = [np.eye(4),np.eye(4)]
place_pose_dict['nut'][0][:3,3] += np.array([0,0,0.15])
place_pose_dict['nut'][1][:3,3] += np.array([0,0,0.08])
place_pose_dict['hnm'] = [np.eye(4),np.eye(4)]
place_pose_dict['hnm'][0][:3,3] -= np.array([0,0,0.05])
place_pose_dict['hnm'][1][:3,3] -= np.array([0,0,0.02])
place_pose_dict['screw'] = [np.eye(4),np.eye(4)]
place_pose_dict['screw'][0][:3,3] = [0,0,-0.07]
place_pose_dict['screw'][1][:3,3] = [0,0,-0.02]
def get_class_name(ob_dir):
if '/nut' in ob_dir:
return 'nut'
elif '/hnm' in ob_dir:
return 'hnm'
elif '/screw' in ob_dir:
return 'screw'
else:
raise RuntimeError(f'class name not found {ob_dir}')
def get_place_success_func(class_name):
if class_name=='nut':
def func(ob_pose,place_pose):
if np.linalg.norm(ob_pose[:2,3]-place_pose[:2,3])>0.005:
print('placement check failed: center dist',np.linalg.norm(ob_pose[:2,3]-place_pose[:2,3]))
return False
if np.abs(ob_pose[2,3]-place_pose[2,3])>0.02:
print(f'placement check failed: height wrong, ob_pose[2,3]={ob_pose[2,3]}, place_pose[2,3]={place_pose[2,3]}')
return False
return True
elif class_name=='hnm':
def func(ob_pose,place_pose):
if np.linalg.norm(ob_pose[:2,3]-place_pose[:2,3])>0.005:
print('placement check failed: center dist',np.linalg.norm(ob_pose[:2,3]-place_pose[:2,3]))
return False
ob_dir = (ob_pose[:3,:3]@np.array([0,0,1]).reshape(3,1)).reshape(3)
place_dir = (place_pose[:3,:3]@np.array([0,0,1]).reshape(3,1)).reshape(3)
dot = np.dot(ob_dir,place_dir)
if np.abs(dot)<np.cos(80/180.0*np.pi):
print('placement failed: orientation not parallel')
return False
return True
elif class_name=='screw':
def func(ob_pose,place_pose):
xy_dist = np.linalg.norm(ob_pose[:2,3]-place_pose[:2,3])
if xy_dist>=0.01:
print('placement check failed: center dist',xy_dist)
return False
ob_dir = (ob_pose[:3,:3]@np.array([0,0,1]).reshape(3,1)).reshape(3)
place_dir = (place_pose[:3,:3]@np.array([0,0,1]).reshape(3,1)).reshape(3)
dot = np.dot(ob_dir,place_dir)
if np.abs(dot)<np.cos(80/180.0*np.pi):
print('placement failed: orientation not parallel')
return False
return True
return func
def get_symmetry_tfs(class_name,allow_reflection=True):
tfs = []
if class_name=='nut':
for xangle in np.arange(0,360,180)/180*np.pi:
for zangle in np.arange(0,360,60)/180*np.pi:
tf = euler_matrix(xangle,0,zangle,axes='sxyz')
tfs.append(tf)
elif class_name=='hnm':
for rz in [0,np.pi]:
tf = euler_matrix(0,0,rz,axes='sxyz')
tfs.append(tf)
elif class_name=='screw':
for zrot in np.arange(0,360,5)/180.0*np.pi:
tf = euler_matrix(0,0,zrot,axes='sxyz')
tfs.append(tf)
else:
raise RuntimeError(f'{class_name} not found')
if not allow_reflection:
new_tfs = []
for i in range(len(tfs)):
if np.linalg.det(tfs[i][:3,:3])<0:
continue
new_tfs.append(tfs[i])
tfs = new_tfs
return np.array(tfs)
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
def is_pose_matrix_close(poseA,poseB,trans_tol,rot_tol,verbose=False):
'''
@trans_tol: in meter
@rot_tol: angle in deg
'''
trans_err = np.linalg.norm(poseA[:3,3]-poseB[:3,3])
if verbose:
print('trans err:',trans_err)
if trans_err>=trans_tol:
return False
angle = geodesic_distance(poseA[:3,:3],poseB[:3,:3])
if verbose:
print('rot err deg:',angle/np.pi*180)
if np.abs(angle)>=rot_tol/180.0*np.pi:
return False
return True
def load_model(model,ckpt_dir):
state_dict = torch.load(ckpt_dir,map_location=torch.device("cpu"))
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
print("Load ckpt from {}".format(ckpt_dir))
try:
new_state_dict = OrderedDict()
for name in state_dict.keys():
new_state_dict[name.replace('module.','')] = state_dict[name]
state_dict = new_state_dict
assert len(state_dict)>0
model.load_state_dict(state_dict)
return model
except Exception as e:
print(e)
print('*'*100)
print("Current model layers:")
cur_layers = []
for name,param in model.named_parameters():
print(name)
cur_layers.append(name)
print('*'*100)
print("ckpt layers:")
ckpt_layers = []
for name,param in state_dict.items():
print(name)
ckpt_layers.append(name)
print('*'*100)
print("Difference:")
for layer in cur_layers:
if layer not in ckpt_layers:
print('{} not found in ckpt'.format(layer))
for layer in ckpt_layers:
if layer not in cur_layers:
print('{} not found in cur model'.format(layer))
raise RuntimeError
def normalizeRotation(pose):
'''Assume no shear case
'''
new_pose = pose.copy()
scales = np.linalg.norm(pose[:3,:3],axis=0)
new_pose[:3,:3] /= scales.reshape(1,3)
return new_pose
def read_normal_image(img_dir):
normal = np.array(Image.open(img_dir))
normal = normal/255.0 * 2 - 1
valid_mask = np.linalg.norm(normal,axis=-1)>0.1
normal = normal/(np.linalg.norm(normal,axis=-1)[:,:,None]+1e-15)
normal[valid_mask==0] = 0
return normal.astype(np.float32)
def toOpen3dCloud(points,colors=None,normals=None):
import open3d as o3d
cloud = o3d.geometry.PointCloud()
cloud.points = o3d.utility.Vector3dVector(points.astype(np.float64))
if colors is not None:
if colors.max()>1:
colors = colors/255.0
cloud.colors = o3d.utility.Vector3dVector(colors.astype(np.float64))
if normals is not None:
cloud.normals = o3d.utility.Vector3dVector(normals.astype(np.float64))
return cloud
def correct_pcd_normal_direction(pcd, view_port=np.zeros((3),dtype=float)):
view_dir = view_port.reshape(-1,3)-np.asarray(pcd.points) #(N,3)
view_dir = view_dir/np.linalg.norm(view_dir,axis=1).reshape(-1,1)
normals = np.asarray(pcd.normals)/(np.linalg.norm(np.asarray(pcd.normals),axis=1)+1e-10).reshape(-1,1)
dots = (view_dir*normals).sum(axis=1)
indices = np.where(dots<0)
normals[indices,:] = -normals[indices,:]
pcd.normals = o3d.utility.Vector3dVector(normals)
return pcd
def value_to_heatmap_rgb(minimum, maximum, value):
minimum, maximum = float(minimum), float(maximum)
ratio = 2 * (value-minimum) / (maximum - minimum)
b = int(max(0, 255*(1 - ratio)))
r = int(max(0, 255*(ratio - 1)))
g = 255 - b - r
return np.array([r, g, b])
def array_to_heatmap_rgb(a):
'''
@a: 1-d array
'''
minimum = a.min()
maximum = a.max()
ratio = 2 * (a-minimum) / (maximum - minimum) # 0 to 2
b = np.clip(255*(1 - ratio), 0, 255)
r = np.clip(255*(ratio - 1), 0, 255)
g = 255 - b - r
return np.stack([r, g, b],axis=-1).reshape(-1,3).astype(np.uint8) #(N,3)
def depth2xyzmap(depth, K):
invalid_mask = (depth<0.1)
H,W = depth.shape[:2]
vs,us = np.meshgrid(np.arange(0,H),np.arange(0,W), sparse=False, indexing='ij')
vs = vs.reshape(-1)
us = us.reshape(-1)
zs = depth.reshape(-1)
xs = (us-K[0,2])*zs/K[0,0]
ys = (vs-K[1,2])*zs/K[1,1]
pts = np.stack((xs.reshape(-1),ys.reshape(-1),zs.reshape(-1)), 1) #(N,3)
xyz_map = pts.reshape(H,W,3).astype(np.float32)
xyz_map[invalid_mask] = 0
return xyz_map.astype(np.float32)
def geodesic_distance(R1,R2):
cos = (np.trace(R1.dot(R2.T))-1)/2
cos = np.clip(cos,-1,1)
return math.acos(cos)
def directionVecToRotation(direction, ref=np.array([0,0,1])):
direction = direction/np.linalg.norm(direction)
v = np.cross(direction,ref)
if (v==0).all():
R = np.eye(3)
return R
s = np.linalg.norm(v)
c = direction.dot(ref)
v_skew = [[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]]
v_skew = np.array(v_skew)
if s==0: # opposite direction rotate around any axis
R=[[1,0,0],
[0,-1,0],
[0,0,-1]]
R = np.array(R)
else:
R = np.identity(3) + v_skew + v_skew.dot(v_skew)*(1-c)/(s**2) #from direction to ref
R = R.T
R = normalizeRotation(R)
if np.linalg.norm(R.dot(ref)-direction)>1e-3:
print("In directionVecToRotMat, rotation error {}".format(np.linalg.norm(R.dot(ref)-direction)))
return R
def hinter_sampling(min_n_pts, radius=1):
'''
Sphere sampling based on refining icosahedron as described in:
Hinterstoisser et al., Simultaneous Recognition and Homography Extraction of
Local Patches with a Simple Linear Classifier, BMVC 2008
:param min_n_pts: Minimum required number of points on the whole view sphere.
:param radius: Radius of the view sphere.
:return: 3D points on the sphere surface and a list that indicates on which
refinement level the points were created.
'''
# Get vertices and faces of icosahedron
a, b, c = 0.0, 1.0, (1.0 + math.sqrt(5.0)) / 2.0
pts = [(-b, c, a), (b, c, a), (-b, -c, a), (b, -c, a), (a, -b, c), (a, b, c),
(a, -b, -c), (a, b, -c), (c, a, -b), (c, a, b), (-c, a, -b), (-c, a, b)]
faces = [(0, 11, 5), (0, 5, 1), (0, 1, 7), (0, 7, 10), (0, 10, 11), (1, 5, 9),
(5, 11, 4), (11, 10, 2), (10, 7, 6), (7, 1, 8), (3, 9, 4), (3, 4, 2),
(3, 2, 6), (3, 6, 8), (3, 8, 9), (4, 9, 5), (2, 4, 11), (6, 2, 10),
(8, 6, 7), (9, 8, 1)]
# Refinement level on which the points were created
pts_level = [0 for _ in range(len(pts))]
ref_level = 0
while len(pts) < min_n_pts:
ref_level += 1
edge_pt_map = {} # Mapping from an edge to a newly added point on that edge
faces_new = [] # New set of faces
# Each face is replaced by 4 new smaller faces
for face in faces:
pt_inds = list(face) # List of point IDs involved in the new faces
for i in range(3):
# Add a new point if this edge hasn't been processed yet,
# or get ID of the already added point.
edge = (face[i], face[(i + 1) % 3])
edge = (min(edge), max(edge))
if edge not in edge_pt_map.keys():
pt_new_id = len(pts)
edge_pt_map[edge] = pt_new_id
pt_inds.append(pt_new_id)
pt_new = 0.5 * (np.array(pts[edge[0]]) + np.array(pts[edge[1]]))
pts.append(pt_new.tolist())
pts_level.append(ref_level)
else:
pt_inds.append(edge_pt_map[edge])
# Replace the current face with 4 new faces
faces_new += [(pt_inds[0], pt_inds[3], pt_inds[5]),
(pt_inds[3], pt_inds[1], pt_inds[4]),
(pt_inds[3], pt_inds[4], pt_inds[5]),
(pt_inds[5], pt_inds[4], pt_inds[2])]
faces = faces_new
# Project the points to a sphere
pts = np.array(pts)
pts *= np.reshape(radius / np.linalg.norm(pts, axis=1), (pts.shape[0], 1))
# Collect point connections
pt_conns = {}
for face in faces:
for i in range(len(face)):
pt_conns.setdefault(face[i], set()).add(face[(i + 1) % len(face)])
pt_conns[face[i]].add(face[(i + 2) % len(face)])
# Order the points - starting from the top one and adding the connected points
# sorted by azimuth
top_pt_id = np.argmax(pts[:, 2])
pts_ordered = []
pts_todo = [top_pt_id]
pts_done = [False for _ in range(pts.shape[0])]
def calc_azimuth(x, y):
two_pi = 2.0 * math.pi
return (math.atan2(y, x) + two_pi) % two_pi
while len(pts_ordered) != pts.shape[0]:
# Sort by azimuth
pts_todo = sorted(pts_todo, key=lambda i: calc_azimuth(pts[i][0], pts[i][1]))
pts_todo_new = []
for pt_id in pts_todo:
pts_ordered.append(pt_id)
pts_done[pt_id] = True
pts_todo_new += [i for i in pt_conns[pt_id]] # Find the connected points
# Points to be processed in the next iteration
pts_todo = [i for i in set(pts_todo_new) if not pts_done[i]]
# Re-order the points and faces
pts = pts[np.array(pts_ordered), :]
pts_level = [pts_level[i] for i in pts_ordered]
pts_order = np.zeros((pts.shape[0],))
pts_order[np.array(pts_ordered)] = np.arange(pts.shape[0])
for face_id in range(len(faces)):
faces[face_id] = [pts_order[i] for i in faces[face_id]]
return pts, pts_level
def to_homo(pts):
'''
@pts: (N,3 or 2) will homogeneliaze the last dimension
'''
assert len(pts.shape)==2, f'pts.shape: {pts.shape}'
homo = np.concatenate((pts, np.ones((pts.shape[0],1))),axis=-1)
return homo
def to_homo_torch(pts):
'''
@pts: shape can be (B,N,3 or 2) or (N,3) will homogeneliaze the last dimension
'''
ones = torch.ones((*pts.shape[:-1],1)).to(pts.device).float()
homo = torch.cat((pts, ones),dim=-1)
return homo
def sph2cart(phi, theta, r):
point_on_sphere = np.zeros(3)
point_on_sphere[0] = r * math.sin(phi) * math.cos(theta)
point_on_sphere[1] = r * math.sin(phi) * math.sin(theta)
point_on_sphere[2] = r * math.cos(phi)
return point_on_sphere
def random_direction(theta_range=[0,np.pi*2], phi_range=[0,np.pi]):
# Random pose on a sphere : https://www.jasondavies.com/maps/random-points/
theta = np.random.uniform(theta_range[0],theta_range[1])
zmax = math.cos(phi_range[0])
zmin = math.cos(phi_range[1])
elev = np.random.uniform(zmin,zmax)
phi = math.acos(elev)
return sph2cart(phi, theta, 1)
def random_gaussian_magnitude(max_T, max_R):
direction_T = random_direction()
direction_T /= np.linalg.norm(direction_T)
while 1:
magn_T = np.random.normal(0,max_T)
if abs(magn_T)<=max_T:
break
T = direction_T*magn_T
direction_R = random_direction()
direction_R = direction_R/np.linalg.norm(direction_R)
while 1:
magn_R = np.random.normal(0,max_R) #degree
if abs(magn_R)<=max_R:
break
rod = direction_R*magn_R/180.0*np.pi
R = cv2.Rodrigues(rod)[0].reshape(3,3).copy()
pose = np.eye(4)
pose[:3,:3] = R
pose[:3,3] = T.copy()
return pose
def random_uniform_magnitude(max_T, max_R):
'''
@max_R: degree
'''
direction_T = random_direction()
direction_T = direction_T/np.linalg.norm(direction_T)
magn_T = np.random.uniform(0,max_T)
T = direction_T*magn_T
direction_R = random_direction()
direction_R = direction_R/np.linalg.norm(direction_R)
magn_R = np.random.uniform(0,max_R)
rod = direction_R*magn_R/180.0*np.pi
R = cv2.Rodrigues(rod)[0].reshape(3,3).copy()
pose = np.eye(4)
pose[:3,:3] = R
pose[:3,3] = T.copy()
return pose
def chamfer_distance_between_clouds_mutual(pts1,pts2):
kdtree1 = cKDTree(pts1)
dists1, indices1 = kdtree1.query(pts2)
kdtree2 = cKDTree(pts2)
dists2, indices2 = kdtree2.query(pts1)
dists = np.concatenate([dists1,dists2],axis=0).reshape(-1)
return dists
def cloudA_minus_cloudB(ptsA,ptsB,thres):
kdtree = cKDTree(ptsA)
indices_tuple = kdtree.query_ball_point(ptsB,r=thres,n_jobs=-1)
remove_ids = np.unique(np.concatenate(indices_tuple,axis=0).reshape(-1)).astype(int)
keep_ids = list(set(np.arange(len(ptsA)))-set(remove_ids))
keep_ids = np.array(keep_ids).astype(int)
return ptsA[keep_ids], keep_ids
def compute_cloud_resolution(pts,n_sample=100):
ids = np.random.choice(len(pts),size=n_sample).astype(int)
sample_pts = pts[ids]
background_ids = np.array(list(set(np.arange(len(pts)))-set(ids))).astype(int)
background_pts = pts[background_ids]
kdtree = cKDTree(background_pts)
dists,indices = kdtree.query(sample_pts)
dists = np.array(dists[np.isfinite(dists)])
resolution = np.sort(dists)[:10].mean()
return resolution