forked from wenbowen123/catgrasp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmentations.py
94 lines (74 loc) · 2.56 KB
/
augmentations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os.path
import numpy as np
import os,sys,copy,time,cv2
from scipy.signal import convolve2d
code_dir = os.path.dirname(os.path.realpath(__file__))
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
import torchvision
from PIL import Image
from transformations import *
from Utils import *
class RotateCloudZAxis:
def __init__(self,cfg):
self.cfg = cfg
def __call__(self,data):
if np.random.uniform()<self.cfg['rotate_cloud_prob']:
center = (data['cloud_xyz'].max(axis=0) + data['cloud_xyz'].min(axis=0)) / 2
tf = np.eye(4)
tf[:3,3] = -center
new_tf = np.eye(4)
z_rot = np.random.uniform(0,np.pi*2)
new_tf[:3,:3] = euler_matrix(0,0,z_rot,axes='sxyz')[:3,:3]
tf = new_tf@tf
new_tf = np.eye(4)
new_tf[:3,3] = center
tf = new_tf@tf
for k in ['cloud_xyz']:
if k in data:
data[k] = (tf@to_homo(data[k]).T).T[:,:3]
for k in ['cloud_normal']:
if k in data:
data[k] = (tf[:3,:3]@data[k].T).T
return data
class FlipCloud:
def __init__(self,cfg):
self.cfg = cfg
def __call__(self,data,axis=['x','y','z']):
'''
@axis: flip along axis
'''
if np.random.uniform()<self.cfg['flip_cloud_prob']:
cur_axis = np.random.choice(np.array(axis),size=1)
dim = ['x','y','z'].index(cur_axis)
data['cloud_xyz'][:,dim] = -data['cloud_xyz'][:,dim]
if 'cloud_normal' in data:
data['cloud_normal'][:,dim] = -data['cloud_normal'][:,dim]
return data
class NormalizeCloud:
def __init__(self):
pass
def __call__(self,data):
max_xyz = data['cloud_xyz'].max(axis=0)
min_xyz = data['cloud_xyz'].min(axis=0)
scale = (max_xyz-min_xyz).max()
data['cloud_xyz'] = (data['cloud_xyz']-min_xyz) / (scale+1e-15)
return data
class DropoutCloud:
def __init__(self,cfg):
self.cfg = cfg
def __call__(self,data):
if np.random.uniform()<self.cfg['dropout_prob']:
dropout_ratio = np.random.uniform(0,self.cfg['dropout_max_ratio'])
n_drop = int(dropout_ratio*len(data['cloud_xyz']))
drop_ids = np.random.choice(len(data['cloud_xyz']),size=n_drop,replace=False)
keep_ids = np.array(list(set(np.arange(len(data['cloud_xyz']))) - set(drop_ids)))
to_replace_ids = np.random.choice(keep_ids,size=n_drop,replace=True)
for k in ['cloud_xyz','cloud_normal','cloud_rgb','cloud_nocs']:
if k in data:
data[k][drop_ids] = data[k][to_replace_ids]
return data