forked from wenbowen123/catgrasp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredicter.py
338 lines (280 loc) · 12.6 KB
/
predicter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import numpy as np
import open3d as o3d
from transformations import *
import os,sys,yaml,copy,pickle,time,cv2,socket,argparse,inspect,trimesh,operator,gzip,re,random,torch
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
from scipy.spatial import cKDTree
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(code_dir)
sys.path.append("{}/../".format(code_dir))
sys.path.append("{}/ss-pybullet".format(code_dir))
from dexnet.grasping.grasp import ParallelJawPtGrasp3D
from autolab_core import YamlConfig
from dexnet.grasping.grasp_sampler import PointConeGraspSampler,NocsTransferGraspSampler
from PIL import Image
from Utils import *
from data_reader import *
from pointnet2 import *
from aligning import *
import PointGroup.data.dataset_seg as dataset_seg
from PointGroup.model.pointgroup.pointgroup import PointGroup
import PointGroup.lib.pointgroup_ops.functions.pointgroup_ops as pointgroup_ops
import PointGroup.util.config as config_pg
import spconv
from spconv.modules import SparseModule
from dataset_nunocs import NunocsIsolatedDataset
from dataset_grasp import GraspDataset
from functools import partial
from sklearn.cluster import DBSCAN,MeanShift
torch.multiprocessing.set_sharing_strategy('file_system')
from multiprocessing import Pool
import multiprocessing
from functools import partial
from itertools import repeat
class GraspPredicter:
def __init__(self,class_name):
self.class_name_to_artifact_id = {
'nut': 47,
'hnm': 51,
'screw': 50,
}
artifact_id = self.class_name_to_artifact_id[class_name]
code_dir = os.path.dirname(os.path.realpath(__file__))
artifact_dir = f"{code_dir}/artifacts/artifacts-{artifact_id}"
print('GraspPredicter artifact_dir',artifact_dir)
with open(f"{artifact_dir}/config_grasp.yml",'r') as ff:
self.cfg = yaml.safe_load(ff)
normalizer_dir = '{}/normalizer.pkl'.format(artifact_dir)
if os.path.exists(normalizer_dir):
with open(normalizer_dir,'rb') as ff:
tmp = pickle.load(ff)
self.cfg['mean'] = tmp['mean']
self.cfg['std'] = tmp['std']
self.dataset = GraspDataset(self.cfg,phase='test',class_name=class_name)
self.model = PointNetCls(n_in=self.cfg['input_channel'],n_out=len(self.cfg['classes'])-1)
self.model = load_model(self.model,ckpt_dir='{}/best_val.pth.tar'.format(artifact_dir))
self.model.cuda().eval()
def predict_batch(self,data,grasp_poses):
with torch.no_grad():
batch_size = 200
input_datas = []
for i in range(len(grasp_poses)):
data_transformed = self.dataset.transform(copy.deepcopy(data),grasp_poses[i])
input_data = torch.from_numpy(data_transformed['input'])
input_datas.append(input_data)
input_datas = torch.stack(input_datas,dim=0)
n_split = int(np.ceil(len(input_datas)/batch_size))
ids = np.arange(len(input_datas))
ids_split = np.array_split(ids,n_split)
out = []
for i in range(len(ids_split)):
ids = ids_split[i]
input_data = input_datas[ids].cuda().float()
pred = self.model(input_data)[0]
pred = pred.softmax(dim=1).data.cpu().numpy()
for b in range(len(pred)):
cur_pred = pred[b]
pred_label = cur_pred.argmax()
confidence = cur_pred[pred_label]
out.append([pred_label,confidence,cur_pred])
torch.cuda.empty_cache()
return out
class NunocsPredicter:
def __init__(self,class_name):
self.class_name = class_name
self.class_name_to_artifact_id = {
'nut': 78,
'hnm': 73,
'screw': 76
}
if self.class_name=='nut':
self.min_scale = [0.005,0.005,0.001]
self.max_scale = [0.05,0.05,0.05]
elif self.class_name=='hnm':
self.min_scale = [0.005,0.005,0.005]
self.max_scale = [0.15,0.05,0.05]
elif self.class_name=='screw':
self.min_scale = [0.005,0.005,0.005]
self.max_scale = [0.15,0.05,0.05]
artifact_id = self.class_name_to_artifact_id[class_name]
code_dir = os.path.dirname(os.path.realpath(__file__))
artifact_dir = f"{code_dir}/artifacts/artifacts-{artifact_id}"
print('NunocsPredicter artifact_dir',artifact_dir)
with open(f"{artifact_dir}/config_nunocs.yml",'r') as ff:
self.cfg = yaml.safe_load(ff)
if os.path.exists('{}/normalizer.pkl'.format(artifact_dir)):
with open('{}/normalizer.pkl'.format(artifact_dir),'rb') as ff:
tmp = pickle.load(ff)
self.cfg['mean'] = tmp['mean']
self.cfg['std'] = tmp['std']
self.dataset = NunocsIsolatedDataset(self.cfg,phase='test')
self.model = PointNetSeg(n_in=self.cfg['input_channel'],n_out=3*self.cfg['ce_loss_bins'])
self.model = load_model(self.model,ckpt_dir='{}/best_val.pth.tar'.format(artifact_dir))
self.model.cuda().eval()
def predict(self,data):
with torch.no_grad():
data['cloud_nocs'] = np.zeros(data['cloud_xyz'].shape)
data['cloud_rgb'] = np.zeros(data['cloud_xyz'].shape)
data_transformed = self.dataset.transform(copy.deepcopy(data))
self.data_transformed = data_transformed
ori_cloud = data_transformed['cloud_xyz_original']
input_data = torch.from_numpy(data_transformed['input']).cuda().float().unsqueeze(0)
pred = self.model(input_data)[0].reshape(-1,3,self.cfg['ce_loss_bins'])
bin_resolution = 1/self.cfg['ce_loss_bins']
pred_coords = pred.argmax(dim=-1).float()*bin_resolution
probs = pred.softmax(dim=-1)
confidence_z = torch.gather(probs[:,2,:],dim=-1,index=pred[:,2,:].argmax(dim=-1).unsqueeze(-1)).data.cpu().numpy().reshape(-1)
conf_color = array_to_heatmap_rgb(confidence_z)
nocs_cloud = pred_coords.data.cpu().numpy()-0.5
nocs_cloud_down = copy.deepcopy(nocs_cloud)
ori_cloud_down = copy.deepcopy(ori_cloud)
best_ratio = 0
best_transform = None
best_nocs_cloud = None
best_symmetry_tf = None
for symmetry_tf in [np.eye(4)]:
tmp_nocs_cloud_down = (symmetry_tf@to_homo(nocs_cloud_down).T).T[:,:3]
for thres in [0.003,0.005]:
use_kdtree_for_eval = False
kdtree_eval_resolution = 0.003
transform, inliers = estimate9DTransform(source=tmp_nocs_cloud_down,target=ori_cloud_down,PassThreshold=thres,max_iter=10000,use_kdtree_for_eval=use_kdtree_for_eval,kdtree_eval_resolution=kdtree_eval_resolution,max_scale=self.max_scale,min_scale=self.min_scale,max_dimensions=np.array([1.2,1.2,1.2]))
if transform is None:
continue
if np.linalg.det(transform[:3,:3])<0:
continue
scales = np.linalg.norm(transform[:3,:3],axis=0)
print("thres",thres)
print("estimated scales",scales)
print("transform:\n",transform)
transformed = (transform@to_homo(tmp_nocs_cloud_down).T).T[:,:3]
err_thres = 0.003
cloud_at_canonical = (np.linalg.inv(transform)@to_homo(ori_cloud_down).T).T[:,:3]
dimensions = cloud_at_canonical.max(axis=0)-cloud_at_canonical.min(axis=0)
print("estimated canonical dimensions",dimensions)
errs = np.linalg.norm(transformed-ori_cloud_down, axis=1)
ratio = np.sum(errs<=err_thres)/len(errs)
inliers = np.where(errs<=err_thres)[0]
print("inlier ratio",ratio)
if ratio>best_ratio:
best_ratio = ratio
best_symmetry_tf = symmetry_tf
best_transform = transform.copy()
best_nocs_cloud = copy.deepcopy(tmp_nocs_cloud_down)
if best_transform is None:
return None,None
print(f"nocs predictor best_ratio={best_ratio}, scales={np.linalg.norm(best_transform[:3,:3],axis=0)}")
print("nocs pose\n",best_transform)
self.best_ratio = best_ratio
transform = best_transform
self.nocs_pose = transform.copy()
nocs_cloud = (best_symmetry_tf@to_homo(nocs_cloud).T).T[:,:3]
return nocs_cloud, transform
class PointGroupPredictor:
def __init__(self,class_name):
self.class_name_to_artifact_id = {
'nut': 40,
'hnm': 68,
'screw': 77,
}
self.class_name = class_name
artifact_id = self.class_name_to_artifact_id[class_name]
code_dir = os.path.dirname(os.path.realpath(__file__))
artifact_dir = f"{code_dir}/artifacts/artifacts-{artifact_id}"
print('PointGroupPredictor artifact_dir',artifact_dir)
config_dir = f"{artifact_dir}/config_pointgroup.yaml"
self.cfg_pg = config_pg.get_parser(config_dir=config_dir)
with open(config_dir,'r') as ff:
self.cfg = yaml.safe_load(ff)
self.dataset = dataset_seg.Dataset(cfg=self.cfg,cfg_pg=self.cfg_pg,phase='test')
self.model = PointGroup(self.cfg_pg)
self.model = load_model(self.model,ckpt_dir='{}/best_val.pth.tar'.format(artifact_dir))
self.model.cuda().eval()
self.n_slice_per_side = 1
def predict(self,data):
with torch.no_grad():
xmax = data['cloud_xyz'][:,0].max()
xmin = data['cloud_xyz'][:,0].min()
ymax = data['cloud_xyz'][:,1].max()
ymin = data['cloud_xyz'][:,1].min()
xlen = (xmax-xmin)/self.n_slice_per_side
ylen = (ymax-ymin)/self.n_slice_per_side
batch_offsets = [0]
locs = []
xyz_original_all = []
feats = []
colors = []
for ix in range(self.n_slice_per_side):
for iy in range(self.n_slice_per_side):
xstart = xmin+ix*xlen
ystart = ymin+iy*ylen
keep_mask = (data['cloud_xyz'][:,0]>=xstart) & (data['cloud_xyz'][:,0]<=xstart+xlen) & (data['cloud_xyz'][:,1]>=ystart) & (data['cloud_xyz'][:,1]<=ystart+ylen)
xyz_origin = data['cloud_xyz'][keep_mask]
normals = data['cloud_normal'][keep_mask]
color = data['cloud_rgb'][keep_mask]
pcd = toOpen3dCloud(xyz_origin)
pcd = pcd.voxel_down_sample(voxel_size=self.cfg['downsample_size'])
pts = np.asarray(pcd.points).copy()
kdtree = cKDTree(xyz_origin)
dists,indices = kdtree.query(pts)
xyz_origin = xyz_origin[indices]
normals = normals[indices]
color = color[indices]
xyz = xyz_origin * self.dataset.scale
xyz -= xyz.min(0)
batch_offsets.append(batch_offsets[-1] + xyz.shape[0])
i = ix+iy*self.n_slice_per_side
locs.append(torch.cat([torch.LongTensor(xyz.shape[0], 1).fill_(i), torch.from_numpy(xyz).long()], 1))
xyz_original_all.append(torch.from_numpy(xyz_origin))
feats.append(torch.from_numpy(normals))
colors.append(torch.from_numpy(color))
batchsize = len(batch_offsets)-1
batch_offsets = torch.tensor(batch_offsets, dtype=torch.int)
locs = torch.cat(locs, 0)
xyz_original_all = torch.cat(xyz_original_all, 0).to(torch.float32)
feats = torch.cat(feats, 0)
colors = torch.cat(colors, 0)
spatial_shape = np.clip((locs.max(0)[0][1:] + 1).numpy(), self.dataset.full_scale[0], None)
voxel_locs, p2v_map, v2p_map = pointgroup_ops.voxelization_idx(locs, len(batch_offsets)-1, self.dataset.mode)
coords = locs.cuda()
voxel_coords = voxel_locs.cuda()
p2v_map = p2v_map.cuda()
v2p_map = v2p_map.cuda()
coords_float = xyz_original_all.cuda().float()
feats = feats.cuda().float()
batch_offsets = batch_offsets.cuda()
if self.cfg_pg.use_coords:
feats = torch.cat((feats, coords_float), 1)
voxel_feats = pointgroup_ops.voxelization(feats, v2p_map, self.cfg_pg.mode)
input_ = spconv.SparseConvTensor(voxel_feats, voxel_coords.int(), spatial_shape, self.cfg_pg.batch_size)
ret = self.model(input_, p2v_map, coords_float, coords[:, 0].int(), batch_offsets, epoch=self.model.prepare_epochs-1)
offsets = ret['pt_offsets'].data.cpu().numpy()
xyz_original_all = xyz_original_all.data.cpu().numpy()
pcd = toOpen3dCloud(xyz_original_all)
pcd = pcd.voxel_down_sample(voxel_size=0.002)
xyz_down = np.asarray(pcd.points).copy()
kdtree = cKDTree(xyz_original_all)
dists,indices = kdtree.query(xyz_down)
xyz_down = xyz_original_all[indices]
xyz_shifted = xyz_down+offsets[indices]
self.xyz_shifted = xyz_shifted
if self.class_name=='hnm':
eps = 0.003
min_samples = 20
bandwidth = 0.005
elif self.class_name=='nut':
eps = 0.003
min_samples = 5
bandwidth = 0.007
elif self.class_name=='screw':
eps = 0.003
min_samples = 5
bandwidth = 0.009
else:
raise NotImplemented
labels = MeanShift(bandwidth=bandwidth,cluster_all=True,n_jobs=-1,seeds=None).fit_predict(xyz_shifted)
kdtree = cKDTree(xyz_down)
dists,indices = kdtree.query(data['cloud_xyz'])
labels_all = labels[indices]
return labels_all