forked from wenbowen123/catgrasp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_nunocs.py
119 lines (91 loc) · 4.41 KB
/
trainer_nunocs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os.path
import numpy as np
import os,sys,copy,time,cv2,tqdm
from scipy.signal import convolve2d
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(code_dir)
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
import torchvision
from PIL import Image
from dataset_nunocs import *
from pointnet2 import *
from loss import *
class TrainerNunocs:
def __init__(self,cfg):
self.cfg = cfg
self.epoch = 0
self.best_train = 1e9
self.best_val = 1e9
self.train_data = NunocsIsolatedDataset(self.cfg,phase='train')
self.val_data = NunocsIsolatedDataset(self.cfg,phase='val')
self.train_loader = torch.utils.data.DataLoader(self.train_data, batch_size=self.cfg['batch_size'], shuffle=True, num_workers=self.cfg['n_workers'], pin_memory=False, drop_last=True,worker_init_fn=worker_init_fn)
self.val_loader = torch.utils.data.DataLoader(self.val_data, batch_size=self.cfg['batch_size'], shuffle=True, num_workers=self.cfg['n_workers'], pin_memory=False, drop_last=False,worker_init_fn=worker_init_fn)
self.model = PointNetSeg(n_in=self.cfg['input_channel'],n_out=3*self.cfg['ce_loss_bins'])
self.model = nn.DataParallel(self.model)
self.model.cuda()
start_lr = self.cfg['start_lr']/64*self.cfg['batch_size']
if self.cfg['optimizer_type']=='adam':
self.optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()), lr=start_lr, weight_decay=self.cfg['weight_decay'], betas=(0.9, 0.99), amsgrad=False)
elif self.cfg['optimizer_type']=='sgd':
self.optimizer = optim.SGD(filter(lambda p: p.requires_grad, self.model.parameters()), lr=start_lr,weight_decay=self.cfg['weight_decay'], momentum=0.9)
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=self.cfg['lr_milestones'], gamma=0.1)
def train_loop(self):
self.model.train()
avg_loss = []
criteria = NocsMinSymmetryCELoss(self.cfg)
for iter, batch in enumerate(self.train_loader):
input_data = batch['input'].cuda().float()
cloud_nocs = batch['cloud_nocs'].cuda().float()
pred, l4_points = self.model(input_data)
bin_resolution = 1/self.cfg['ce_loss_bins']
loss = criteria(pred,cloud_nocs)
avg_loss.append(loss.item())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if iter%max(1,len(self.train_loader)//10)==0:
print('epoch={}, {}/{}, train_loss={}'.format(self.epoch, iter, len(self.train_loader), loss.item()))
avg_loss = np.array(avg_loss).mean()
if avg_loss<self.best_train:
self.best_train = avg_loss
checkpoint_data = {'epoch': self.epoch, 'state_dict': self.model.state_dict(), 'best_res': self.best_train}
dir = "{}/best_train.pth.tar".format(self.cfg['save_dir'])
torch.save(checkpoint_data, dir,_use_new_zipfile_serialization=False)
def val_loop(self):
self.model.eval()
avg_loss = []
criteria = NocsMinSymmetryCELoss(self.cfg)
with torch.no_grad():
for iter,batch in enumerate(self.val_loader):
input_data = batch['input'].cuda().float()
cloud_nocs = batch['cloud_nocs'].cuda().float()
pred, l4_points = self.model(input_data)
bin_resolution = 1/self.cfg['ce_loss_bins']
loss = criteria(pred,cloud_nocs)
avg_loss.append(loss.item())
if iter%max(1,len(self.val_loader)//10)==0:
print('epoch={}, {}/{}, val_loss={}'.format(self.epoch,iter,len(self.val_loader),loss.item()))
avg_loss = np.array(avg_loss).mean()
if avg_loss<self.best_val:
self.best_val = avg_loss
checkpoint_data = {'epoch': self.epoch, 'state_dict': self.model.state_dict(), 'best_res': self.best_val}
dir = "{}/best_val.pth.tar".format(self.cfg['save_dir'])
torch.save(checkpoint_data, dir,_use_new_zipfile_serialization=False)
def train(self):
for self.epoch in range(self.cfg['n_epochs']):
np.random.seed(self.cfg['random_seed']+self.epoch)
print('epoch {}/{}'.format(self.epoch, self.cfg['n_epochs']))
begin = time.time()
self.train_loop()
print("train loop time: {} s".format(time.time()-begin))
print(">>>>>>>>>>>>>>>>>>>>")
begin = time.time()
self.val_loop()
print("val loop time: {} s".format(time.time()-begin))
print(">>>>>>>>>>>>>>>>>>>>")
self.scheduler.step()