-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotation_raw.py
131 lines (113 loc) · 5.63 KB
/
rotation_raw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import math
import torch
import random
import numbers
import torchvision.transforms.functional as F
class RandomPolarRotation(object):
"""Rotate the raw polarimetry instrument data by angle.
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees).
resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
An optional resampling filter. See `filters`_ for more information.
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
expand (bool, optional): Optional expansion flag.
If true, expands the output to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If None, it is zero for all channels respectively.
p (float): probability threshold with which image should be rotated or left untreated instead.
any (bool): If false, only angles [90, 180, 270] will be chosen. Otherwise, a random angle
within the boundaries will be generated (default).
.. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
"""
def __init__(self, degrees, resample=False, expand=False, center=None, fill=None, p=0.5, any=True):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
if len(degrees) != 2:
raise ValueError("If degrees is a sequence, it must be of len 2.")
self.degrees = degrees
self.resample = resample
self.expand = expand
self.center = center
self.fill = fill
self.p = p
self.any = any
def get_params(self, degrees):
"""Get parameters for ``rotate`` for a random rotation.
Returns:
params to be passed to ``rotate`` for random rotation.
"""
angle = random.uniform(degrees[0], degrees[1]) if self.any else random.choice([90, 180, 270])
return angle
@staticmethod
def get_rmat(deg):
"""Get rotation matrix for Mueller matrix.
Returns:
rotation matrix for Mueller matrix.
"""
theta = deg / 180 * math.pi
rmat = torch.tensor([
[1, 0, 0, 0],
[0, math.cos(2*theta), -math.sin(2*theta), 0],
[0, math.sin(2*theta), +math.cos(2*theta), 0],
[0, 0, 0, 1],
])
return rmat
def __call__(self, frame, label=None, transpose=True, angle=None, center=None, *args, **kwargs):
"""
Args:
img (PIL Image): Image to be rotated.
Returns:
PIL Image: Rotated image.
"""
if random.random() < self.p:
# spatial transformation
angle = self.get_params(self.degrees) if angle is None else angle
self.center = self.center if center is None else center
fill48 = torch.stack([torch.eye(4) for _ in range(3)]).flatten().tolist()
frame = F.rotate(frame, angle, self.resample, self.expand, self.center, fill=fill48).moveaxis(0, -1)
# unravel matrices
I, A, W = frame[..., :16], frame[..., 16:32], frame[..., 32:]
# HxWx16 to HxWx4x4 matrix reshaping
shape = (*A.shape[:-1], 4, 4)
zero_idcs = torch.all(A==torch.zeros_like(A), dim=-1)
I, A, W = [el.reshape(shape) for el in [I, A, W]]
if transpose: I, A, W = [el.transpose(-2, -1) for el in [I, A, W]]
# replace zeros with identity matrices to make A and W invertible
A[zero_idcs] = torch.eye(4, dtype=A.dtype, device=A.device)
W[zero_idcs] = torch.eye(4, dtype=W.dtype, device=W.device)
# mueller matrix transformation: A_theta = (R_theta @ A_inv)_inv since R_theta @ M @ R_-theta = R_theta @ A_inv @ I @ W_inv @ R_-theta
T = self.get_rmat(angle).to(A.dtype)
A = A @ torch.linalg.inv(T)
W = T @ W
# HxWx4 to HxWx16 matrix reshaping
if transpose: I, A, W = [el.transpose(-2, -1) for el in [I, A, W]]
I, A, W = [el.flatten(-2, -1).moveaxis(-1, 0) for el in [I, A, W]]
# stack matrices together again
rotated_frame = torch.cat([I, A, W], dim=0)
if label is not None:
if self.fill is None: self.fill = [0] * int(label.shape[0])
rotated_label = F.rotate(label, angle, self.resample, self.expand, self.center, fill=self.fill)
return rotated_frame, rotated_label
return rotated_frame
else:
if label is not None:
return frame, label
return frame
def __repr__(self):
format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
format_string += ', resample={0}'.format(self.resample)
format_string += ', expand={0}'.format(self.expand)
if self.center is not None:
format_string += ', center={0}'.format(self.center)
format_string += ')'
return format_string