-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcde_mdn.py
110 lines (89 loc) · 4.1 KB
/
cde_mdn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import torch.nn as nn
import model.utils as utils
import torchcde
import model.mdn as mdn
# Uncomment the following line and set full_cov to True to use full covariance MDN.
# import model.mdn_full as mdn
class CDEFunc(nn.Module):
'''
Neural CDE grad function.
Ref: https://github.com/patrick-kidger/torchcde/blob/master/example/time_series_classification.py
'''
def __init__(self, input_dim, latent_dim):
super(CDEFunc, self).__init__()
self.input_dim = input_dim
self.latent_dim = latent_dim
self.linear1 = nn.Linear(latent_dim, 1024)
self.relu1 = nn.PReLU()
self.resblocks = nn.Sequential(*[utils.ResBlock(1024, 1024, nonlinear=nn.PReLU, layernorm=False) for i in range(3)])
self.relu2 = nn.PReLU()
self.linear2 = nn.Linear(1024, input_dim * latent_dim)
self.relu3 = nn.PReLU()
self.linear3 = nn.Linear(input_dim * latent_dim, 4096)
self.tanh = nn.Tanh()
self.linear4 = nn.Linear(4096, input_dim * latent_dim)
def forward(self, t, z):
z = self.linear1(z)
z = self.relu1(z)
z = self.resblocks(z)
z = self.relu2(z)
z = self.linear2(z)
z = self.relu3(z)
z = self.linear3(z)
z = self.tanh(z) # important!
z = self.linear4(z)
z = z.view(z.shape[0], self.latent_dim, self.input_dim)
return z
class CDE_MDN(nn.Module):
'''
A Neural CDE Mixture Density Network.
Args:
input_dim (int): dimension of the input.
latent_dim (int): dimension of the latent space.
output_dim (int): dimension of the output.
n_gaussian (int, optional): number of Gaussians to use. Defaults to 12.
dataparallel (bool, optional): whether to use dataparallel. Defaults to False.
full_cov (bool, optional): whether to use full covariance MDN. Defaults to False.
Returns:
pi (tensor): predicted mixture weights.
normal (tensor): predicted Gaussians. If dataparallel is True, this is split into loc, scale.
'''
def __init__(self, input_dim, latent_dim, output_dim, n_gaussian=12, full_cov=False):
super(CDE_MDN, self).__init__()
self.input_dim = input_dim
self.latent_dim = latent_dim
self.output_dim = output_dim
self.n_gaussian = n_gaussian
self.full_cov = full_cov
self.output_feature = False # used to explore the embedding/feature space
self.cde_func = torch.compile(CDEFunc(input_dim, latent_dim))
self.initial = torch.compile(nn.Sequential(
utils.create_net(input_dim, 1024, n_layers=0, n_units=1024, nonlinear=nn.ReLU),
*[utils.ResBlock(1024, 1024, nonlinear=nn.ReLU, layernorm=False) for i in range(3)],
utils.create_net(1024, latent_dim, n_layers=0, n_units=1024, nonlinear=nn.ReLU),
), dynamic=False)
self.readout = torch.compile(nn.Sequential(
utils.create_net(latent_dim, 1024, n_layers=0, n_units=1024, nonlinear=nn.ReLU),
*[utils.ResBlock(1024, 1024, nonlinear=nn.ReLU, layernorm=False) for i in range(3)],
nn.Linear(1024, 1024)
), dynamic=False)
self.mdn = torch.compile(mdn.MixtureDensityNetwork(1024, output_dim, self.n_gaussian, full_cov=full_cov), dynamic=False)
# utils.init_network_weights(self.cde_func, nn.init.orthogonal_)
def forward(self, coeffs):
X = torchcde.CubicSpline(coeffs)
X0 = X.evaluate(X.interval[0])
z0 = self.initial(X0)
z_T = torchcde.cdeint(X=X,
z0=z0,
func=self.cde_func,
t=X.interval,
adjoint=False,
method="fixed_adams", rtol=1e-3, atol=1e-5)
# changing (rtol, atol) from (1e-5, 1e-7) to (1e-3, 1e-5) can speed up 4x with indistinguishable performance
z_T = z_T[:, -1]
if self.output_feature:
return z_T
z_T = self.readout(z_T)
pi, normal = self.mdn(z_T)
return pi, normal