-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSimulCond.m
195 lines (189 loc) · 9.53 KB
/
SimulCond.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
function [Comp T_a3 T_a1 Tc a_eq b_eq kafang_p T_wC Temp_eq Feq_max RT hold_t cycN cycT CyclicFlag]=SimulCond()
CyclicFlag=1; % 1-activate the cycling; 0-isothermal; -1-continuous cooling
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Fe-0.1C-0.17Mn
% Comp=[0.1 0.17 0];% C Mn Si in wt.%
% T_a3=1132; % A3-temperature under PE [K]
% T_a1=[995 994]; % A1-temperature othorequilibrium, A1+, A1-, [K]
% Tc=1043; % Curie temperature [K]
% a_eq=[1.50936E-05 -3.69719E-02 2.26099E+01]; % PE
% b_eq=[-8.94382E-05 1.06755E-01]; % PE
% kafang_p=[0 -0.1572 269.44]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
% T_wC=[6.05521E+01 -2.59977E+02 1.15750E+03]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
% Temp_eq=[1136 995]; % A3-ortho A1+ [K]
% Feq_max=0.985; % maximum ferrite fraction
% %%%%% cycling settings
% RT=[20*60 10*60 10*60 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
% hold_t=[3 0 0].*60; % holding time for first duration, duration after heating, duration after cooling [s]
% cycN=3; % number of cycles
% cycT=[800 854]+273; % cycling temperature [K]
% Fe-0.1C-0.5Mn
Comp=[0.1 0.49 0];% C Mn Si in wt.% the same as in M.Militzer Acta Mater. 2006 Phase field modelling of austenite to ferrite transformation
T_a3=1118; % A3-temperature othorequilibrium=1125K, Para-equilibrium=1117K, linerization of PE from M.G.Meccozi=1106K [K]
T_a1=[986 983]; % A1-temperature othorequilibrium, A1+, A1-, [K]
Tc=1043-5*0.49; % Curie temperature [K]
a_eq=[1.55572e-5 -3.78004e-2 2.29105e1]; % PE
b_eq=[-9.09127e-5 1.06277e-1]; % PE
kafang_p=[0 -0.1661 277.66]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
T_wC=[5.76665e1 -2.48065e2 1.14063e3]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
Temp_eq=[1124 986]; % A3-ortho A1+ [K]
Feq_max=0.985; % maximum ferrite fraction
%%%%% cycling settings
RT=[20*60 10 10 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
hold_t=[30 0 0].*60; % holding time for first duration, duration after heating, duration after cooling [s]
cycN=3; % number of cycles
cycT=[785 842]+273; % cycling temperature [K]
%
% % Fe-0.1C-1.0Mn
% Comp=[0.1 1.0 0];% C Mn Si in wt.%
% T_a3=1096; % A3-temperature under PE [K]
% T_a1=[973 966]; % A1-temperature othorequilibrium, A1+, A1-, [K]
% Tc=1043-5; % Curie temperature [K]
% a_eq=[1.62248E-05 -3.89762E-02 2.33212E+01]; % PE
% b_eq=[-9.00827E-05 1.02737E-01]; % PE
% kafang_p=[0 -0.1892 297.6]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
% T_wC=[5.31265E+01 -2.30403E+02 1.11586E+03]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
% Temp_eq=[1107 973]; % A3-ortho A1+ [K]
% Feq_max=0.985; % maximum ferrite fraction
% %%%%% cycling settings
% RT=[20*60 10*60 10*60 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
% hold_t=[3 0 0].*60; % holding time for first duration, duration after heating, duration after cooling [s]
% cycN=3; % number of cycles
% cycT=[767 822]+273; % cycling temperature [K]
%
% % Fe-0.1C-1.5Mn
% Comp=[0.1 1.5 0];% C Mn Si in wt.%
% T_a3=1073; % A3-temperature under PE [K]
% T_a1=[959 947]; % A1-temperature othorequilibrium, A1+, A1-, [K]
% Tc=1043-10; % Curie temperature [K]
% a_eq=[1.67951E-05 -3.99534E-02 2.36303E+01]; % PE
% b_eq=[-8.88324E-05 9.89725E-02]; % PE
% kafang_p=[0 -0.2463 350.74]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
% T_wC=[4.81792E+01 -2.12909E+02 1.09194E+03]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
% Temp_eq=[1092 959]; % A3-ortho A1+ [K]
% Feq_max=0.985; % maximum ferrite fraction
% %%%%% cycling settings
% RT=[20*60 10*60 10*60 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
% hold_t=[3 0 0].*60; % holding time for first duration, duration after heating, duration after cooling [s]
% cycN=3; % number of cycles
% cycT=[747 797]+273; % cycling temperature [K]
%
% % Fe-0.1C-2.0Mn
% Comp=[0.1 2.0 0];% C Mn Si in wt.%
% T_a3=1051; % A3-temperature under PE [K]
% T_a1=[947 926]; % A1-temperature othorequilibrium, A1+, A1-, [K]
% Tc=1043-15; % Curie temperature [K]
% a_eq=[1.73870E-05 -4.09646E-02 2.39511E+01]; % PE
% b_eq=[-8.82830E-05 9.60369E-02]; % PE
% kafang_p=[0 -0.2643 362.77]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
% T_wC=[4.63613E+01 -2.01776E+02 1.07100E+03]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
% Temp_eq=[1077 926]; % A3-ortho A1+ [K]
% Feq_max=0.985; % maximum ferrite fraction
% %%%%% cycling settings
% RT=[20*60 10*60 10*60 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
% hold_t=[30 0 0].*60; % holding time for first duration, duration after heating, duration after cooling [s]
% cycN=3; % number of cycles
% %cycT=[728 777]+273; % cycling temperature [K]
% cycT=[680 730]+273; % cycling temperature [K]
% %cycT=[666 710]+273;
%
% % Fe-0.1C-2.5Mn
% Comp=[0.1 2.5 0];% C Mn Si in wt.%
% T_a3=1033; % A3-temperature under PE [K]
% T_a1=[934 903]; % A1-temperature othorequilibrium, A1+, A1-, [K]
% Tc=1043-20; % Curie temperature [K]
% a_eq=[1.79303E-05 -4.18770E-02 2.42206E+01]; % PE
% b_eq=[-8.74750E-05 9.30111E-02]; % PE
% kafang_p=[0 -0.2624 356.69]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
% T_wC=[4.40999E+01 -1.90293E+02 1.05051E+03]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
% Temp_eq=[1063 934]; % A3-ortho A1+ [K]
% Feq_max=0.985; % maximum ferrite fraction
% %%%%% cycling settings
% RT=[20*60 10*60 10*60 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
% hold_t=[3 0 0].*60; % holding time for first duration, duration after heating, duration after cooling [s]
% cycN=3; % number of cycles
% cycT=[710 757]+273; % cycling temperature [K]
%
% % Fe-0.25C-0.17Mn
% Comp=[0.25 0.17 0];% C Mn Si in wt.%
% T_a3=1089; % A3-temperature under PE [K]
% T_a1=[997 995]; % A1-temperature othorequilibrium, A1+, A1-, [K]
% Tc=1043; % Curie temperature [K]
% a_eq=[1.55725E-05 -3.79852E-02 2.31433E+01]; % PE
% b_eq=[-9.42502E-05 1.11739E-01]; % PE
% kafang_p=[0 -0.2435 359.46]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
% T_wC=[6.05521E+01 -2.59970E+02 1.15749E+03]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
% Temp_eq=[1091 997]; % A3-ortho A1+ [K]
% Feq_max=0.985; % maximum ferrite fraction
% %%%%% cycling settings
% RT=[20*60 10*60 10*60 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
% hold_t=[3 0 0].*60; % holding time for first duration, duration after heating, duration after cooling [s]
% cycN=3; % number of cycles
% cycT=[725 802]+273; % cycling temperature [K]
%
% % Fe-0.247C-2.06Mn
% Comp=[0.247 2.06 0];% C Mn Si in wt.% of the sample collected from Ancelor Mittar
% T_a3=1019; % A3-temperature othorequilibrium=1045K, Para-equilibrium=1019K,experimental show A3=1034K
% T_a1=[963 938]; % A1+=963 K, A1-=938 K
% Tc=1034; % ND experiment show Curie temperature [K]
% a_eq=[1.74985e-5 -4.11663e-2 2.40289e1]; % PE
% b_eq=[-8.85649e-5 9.60186e-2]; % PE
% % a_eq=[0.0000215981 -0.05069811 29.64121]; % LE
% % b_eq=[-0.0001131724 0.1247617]; % LE
% kafang_p=[0 -0.2249 323.53]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
% T_wC=[4.69338e1 -2.01709e2 1.06888e3]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
% Temp_eq=[1045 963];% A1-=938K; A3_para=1019K
% Feq_max=0.962; % maximum ferrite fraction
% %%%%% cycling settings
% RT=[20*60 10 10 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
% hold_t=[2 1 1].*60; % holding time for first duration, duration after heating, duration after cooling [s]
% cycN=1; % number of cycles
% cycT=[710 730]+273; % cycling temperature [K]
%
% % Fe-0.023C-0.17Mn
% Comp=[0.023 0.17 0];% C Mn Si in wt.%
% T_a3=1163; % A3-temperature under PE [K]
% T_a1=[994 994]; % A1-temperature othorequilibrium, A1+, A1-, [K]
% Tc=1043; % Curie temperature [K]
% a_eq=[1.55700E-05 -3.79799E-02 2.31405E+01]; % PE
% b_eq=[-9.42383E-05 1.11729E-01]; % PE
% kafang_p=[0 -0.1201 230.15]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
% T_wC=[6.05520E+01 -2.59981E+02 1.15751E+03]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
% Temp_eq=[1166 994]; % A3-ortho A1+ [K]
% Feq_max=0.985; % maximum ferrite fraction
% %%%%% cycling settings
% RT=[20*60 10*60 10*60 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
% hold_t=[3 0 0].*60; % holding time for first duration, duration after heating, duration after cooling [s]
% cycN=3; % number of cycles
% cycT=[860 885]+273; % cycling temperature [K]
% % Fe-0.05C-2Mn
% Comp=[0.05 2.0 0];% C Mn Si in wt.%
% T_a3=1064; % A3-temperature othorequilibrium=1090K, Para-equilibrium=1064K
% T_a1=[935 920]; % A1+=963 K, A1-=938 K
% Tc=1034; % ND experiment show Curie temperature [K]
% a_eq=[1.73880E-05 -4.09653E-02 2.39509E+01]; % PE
% b_eq=[-8.82479E-05 9.60050E-02]; % PE
% kafang_p=[0 -0.2318 331.11]; % kafang(T)=a*T^2+b*T+c [J/(mol*mol%)]
% T_wC=[4.63905E+01 -2.01848E+02 1.07104E+03]; % TA3=a*wC^2+b*wC+c under PE [K] (wC in wt.%)
% Temp_eq=[1090 920];
% Feq_max=0.992; % maximum ferrite fraction
% %%%%% cycling settings
% RT=[20*60 10 10 20*60]./60;% First cooling rate; cycling heating rate; cycling cooling rate; final cooling rate [oC/s]
% hold_t=[2 1 1].*60; % holding time for first duration, duration after heating, duration after cooling [s]
% cycN=1; % number of cycles
% cycT=[725 789]+273; % cycling temperature [K]
if CyclicFlag==0 % isothermal
RT(2)=0;
RT(3)=0;
cycN=0;
hold_t(1)=10*60; % [s]
end
if CyclicFlag==-1 % continuous cooling
RT(2)=0;
RT(3)=0;
cycN=0;
hold_t(1)=0;
RT(1)=10; % [K/s]
RT(4)=10; % [K/s]
end
end