-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsolute_drag_fsolver.m
399 lines (381 loc) · 18.7 KB
/
solute_drag_fsolver.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
function [Drag Diffusion Gdiff0]=solute_drag_fsolver(V_previous,Temp,C0_mn,wC_A,wC_F,Ux, ...
Xneq,Xpeq,X0,DC,kafang,Rbcc,SN,distance,hardflag,f_alpha,Xip0,CyclicFlag,CycleStart,tt,TransDir)
% % only for testing
% % needs to transferred from the main program
% % % load('test_N11_5cycles_solute_InterX.mat');
% i=130
% Xneq=xC_F_eq(i);
% Xpeq=xC_A_eq(i);
% X0=Nucleated{i-1}(ll,34);
% DC=D_C(i)*1e-12;
% kafang=Kafang(i);
% Rbcc=Nucleated{i-1}(ll,7);
% SN=length(N_PR{l}(:,1));
% distance=Nucleated{i-1}(ll,32);
% hardflag=Nucleated{i-1}(ll,26);
% Temp=T(i); % [K]
% C0_mn=Comp_m(2);
% wC_A=N_p(l,15);% remote C in austenite [wt.%]
% wC_F=N_p(l,17);% remote C in ferrite [wt.%]
% V_previous=v_t(i-1,l)/1e6; % [m/s]
% if V_previous==0 || abs(V_previous)>1e-6
% V_previous=5e-8; % [m/s]
% end
% clear V_int;
% clear Dim_a Dim_b Dim_v G_diff1 G_diff2 G_diff G_friction;
% clear X1 X2 X3;
% clear G_chem xFe_A_int Mufe_gamma_int Muc_gamma_int;
% clear Z;
% Xip0=DiffInfo{l}(i-1,1,2);
% CycleStart=tcr(3);
% tt=Timer(i);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% General parameters
M_Fe=56;
M_C=12;
M_Mn=55;
M_Si=28;
Uwx=1/((1/Ux-1)*M_Mn/M_Fe); % Uwx=w(mn)/w(Fe), Ux=x(Mn)/(x(Mn)+x(Fe))
R=8.314; % [J/(K.mol)]
L_int=0.5e-9; % interface thinckness [m]
delta_int=L_int/2; % half [m]
Nstep=500; % this step should at least > 500
Lint=-3*delta_int:6*delta_int/Nstep:3*delta_int; % define the positions [m], origin indexed by Nstep/2+1
% E0=[9.9 5 3].*1e3; % binding energies of Mn Ni Co [J/mol], same as H.Chen Acta Mater. 2017
% E0=[1 0.5 0.3].*1e3.*R*T; % binding energies dependent on temperature. 2017
E0=6.0e3;% [J/mol] with a uncertainty of 1.4 kJ/mol, experimentally determined by APT, Scprita 2016 by M. Goune group
E0=7.0e3; % modified on July 17, 2019
% mu(c)=mu0+RTln(xC)+RT(e11xC+e12xMn);
% mu(Mn)=mu0+RTln(xMn)+RT(e12xC+e22xMn);
% mu(Fe)=mu0+RTln(1-xC-xMn)+RT*Yita);
% line1=fcc;line2=bcc
Para_Fe=[28218 -8.44;24312 -8.01];
Para_C=[14547 9.12 -5.66;47969 4.89 -8.11];
Para_Mn=[-49791 -7.63 -1.06;-40813 -6.83 -8.31];
%%%%% convert concentrations
xC_F_int=Xneq/100;
xC_A=100*(wC_A/M_C)/(wC_A/M_C+(100-wC_A)*(Uwx/(1+Uwx))/M_Mn+(100-wC_A)*(1/(1+Ux))/M_Fe); % remote C in austenite [at.%]
xC_F=xC_F_int;
xMn_A=100*(100-xC_A)*Ux/(xC_A+(100-xC_A)*Ux+(100-xC_A)*(1-Ux)); % Mn concentent [mol%] in austenite
xMn_F=100*(100-xC_F)*Ux/(xC_F+(100-xC_F)*Ux+(100-xC_F)*(1-Ux)); % Mn concentent [mol%] in ferrite
%%% Diffusivities [m^2/s]
Dc_alpha=0.02e-4*exp(-10115/Temp)*exp(0.5898*(1+2/pi*atan(14.985-15309/Temp))); % J Agren Acta Metall. 1982 [m^2/s]
y_C=(xC_A/100)/(1-xC_A/100);
Dc_gamma=4.53e-7*((1+y_C*(1-y_C)*8339.9/Temp)*exp(-(1/Temp-2.221e-4)*(17767-26436*y_C)));% J Agren Script Metall. 1986 [m^2/s]
% Dc_alpha=2.2e-4*exp(-125000/(R*T)); % M. Militzer, M.G. Mecozzi, J. Sietsma, S. van der Zwaag, Acta Mater. 54 (2006)
% Dc_gamma=0.15e-4*exp(-142000/(R*T)); % M. Militzer, M.G. Mecozzi, J. Sietsma, S. van der Zwaag, Acta Mater. 54 (2006)
Dc_int=sqrt(Dc_alpha*Dc_gamma); % average [m^2/s]
Dmn_alpha=0.756e-4*exp(-224500/(R*Temp)); % H. Oikawa, The Technology Reports of the Tohoku University, 1982, 215
Dmn_gamma=0.178e-4*exp(-264000/(R*Temp)); % H. Oikawa, The Technology Reports of the Tohoku University, 1982, 215
Dmn_int=sqrt(Dmn_alpha*Dmn_gamma); % average [m^2/s]
% Dmn_int=0.5e-4*exp(-247650/(R*T)); % B. Zhu M. Millitzer Comp. Mater. Sci 2015
Dsi_alpha=0.4e-4*exp(-242800/(R*Temp)); % J. Mahieu, Doc Thesis: Ghent Univ. 2004
Dsi_gamma=0.2e-4*exp(-219800/(R*Temp)); % J. Mahieu, Doc Thesis: Ghent Univ. 2004
Dsi_int=sqrt(Dsi_alpha*Dsi_gamma); % average [m^2/s]
Dcr_alpha=2.33e-4*exp(-238800/(R*Temp)); % H. Liu et al Applied Surface Science,2009
Dcr_gamma=0.169e-4*exp(-263900/(R*Temp)); % H. Liu et al Applied Surface Science,2009
Dcr_int=sqrt(Dcr_alpha*Dcr_gamma); % average [m^2/s]
Mumn_gamma=Para_Mn(1,1)+R.*Temp.*log(xMn_A/100)+R.*Temp.*(Para_Mn(1,2).*(xC_A/100)+Para_Mn(1,3).*(xMn_A/100));
Mumn_alpha=Para_Mn(2,1)+R.*Temp.*log(xMn_F/100)+R.*Temp.*(Para_Mn(2,2).*(xC_F/100)+Para_Mn(2,3).*(xMn_F/100));
deltaE_Mn=(Mumn_gamma-Mumn_alpha)/2; % [J/mol]
G_diff_min=(2*C0_mn*deltaE_Mn+R*Temp*C0_mn*(exp(-2*deltaE_Mn/(R*Temp))-1))/100; % [J/mol]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ff=@(x)solute_drag_fun(x,Temp,C0_mn,wC_A,wC_F,Ux,Xneq,Xpeq,X0,DC,kafang,Rbcc,SN,distance,hardflag);
% opts=optimset('Display','iter','Algorithm',{'levenberg-marquardt',0.005},'MaxFunEvals',1000,'MaxIter',1000,'TolFun',1e-5);% option settings for fsolve
% opts=optimset('Display','notify','Algorithm',{'levenberg-marquardt',0.005},'MaxFunEvals',1000,'MaxIter',1000,'TolFun',1e-5);% option settings for fsolve
opts=optimset('Display','off','Algorithm',{'levenberg-marquardt',0.005},'MaxFunEvals',1000,'MaxIter',1000,'TolFun',1e-10);% option settings for fsolve
SolFlag=0;
v0=[V_previous 5e-7 1e-8 1e-9];
jj=1;
while SolFlag~=1
x0=[X0+(Xpeq-X0).*rand(1,1) distance.*rand(1,1) v0(jj)];
[out,fval,exitflag]=fsolve(ff,x0,opts); % [Xip DiffLL Velocity]
if jj==length(v0)
Xip=[];
DiffLL=[];
Velocity=[];
Xpm=X0;
SolFlag=1;
end
if out(1)>X0 && (out(2)>0 && out(2)<distance) && exitflag>0
Xip=out(1);
DiffLL=out(2);
Velocity=out(3);
Xpm=X0;
SolFlag=1;
end
if (out(1)>X0 && out(1)<Xpeq) && (out(2)>0 && out(2)<distance) && exitflag<=0 && Rbcc<0.5
Xip=out(1);
DiffLL=out(2);
Velocity=out(3);
Xpm=X0;
SolFlag=1;
end
jj=jj+1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(DiffLL)
if DiffLL<=(distance-Rbcc) %&& hardflag==0
softflag=0;
else
ff=@(x)solute_drag_fun_soft_impingement(x,Temp,C0_mn,wC_A,wC_F,Ux,Xneq,Xpeq,X0,DC,kafang,Rbcc,SN,distance,hardflag);
% opts=optimset('Display','iter','Algorithm',{'levenberg-marquardt',0.005},'MaxFunEvals',1000,'MaxIter',1000,'TolFun',1e-6);% option settings for fsolve
opts=optimset('Display','off','Algorithm',{'levenberg-marquardt',0.005},'MaxFunEvals',1000,'MaxIter',1000,'TolFun',1e-6);% option settings for fsolve
SolFlag=0;
v0=[V_previous 1e-9 1e-8 1e-7 5e-7];
jj=1;
temp_out=[];
while SolFlag~=1
x0=[X0+(Xpeq-X0).*rand(1,1) X0 v0(jj)];
[out,fval,exitflag]=fsolve(ff,x0,opts); % [Xip Xpm Velocity]
if jj==length(v0)
Xip=[];
Xpm=[];
Velocity=[];
DiffLL=distance-Rbcc;
SolFlag=1;
end
if out(1)>X0 && (out(2)>0 && out(2)<0.8*4.6) && exitflag>0 && ~(out(1)>Xpeq && out(2)<out(1)) && ...
~(out(3)<0 && (CyclicFlag<1 || (CyclicFlag==1 && tt<CycleStart)))
Xip=out(1);
Xpm=out(2);
Velocity=out(3);
DiffLL=distance-Rbcc;
SolFlag=1;
end
temp_out=[temp_out;out];
jj=jj+1;
end
softflag=1;
if isempty(Xip)
if Rbcc<distance
Xip=(X0-Rbcc^3/distance^3.*Xneq)./(1-Rbcc^3/distance^3);
if Xip>Xpeq && TransDir==1 && tt<CycleStart
Xip=Xpeq;
end
else
Xip=Xpeq;
end
DiffLL=0;
Xpm=Xip;
softflag=1;
Gchem=kafang*(Xpeq-Xip); % [J/mol]
if Gchem<0
G_diff_min=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,-1e-10);
else
G_diff_min=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,1e-10);
end
if abs(Gchem)>abs(G_diff_min)
syms V_int; % [m/s]
syms Dim_a Dim_b Dim_v G_diff1 G_diff2 G_diff G_friction;
%% Directly using the integrated results to calculate dissipation energy due to trans-diffusion G_diss
Dim_a=Dmn_int*(deltaE_Mn-E0)/(R*Temp*V_int*delta_int); % dimensionless parameter a
Dim_b=Dmn_int*(deltaE_Mn+E0)/(R*Temp*V_int*delta_int); % dimensionless parameter b
Dim_v=abs(V_int*delta_int/Dmn_int); % dimensionless parameter v
Dim_v=abs(Dim_v); % add on April 24,2020
G_diff1=Dim_a.^2*R*Temp*V_int*C0_mn*delta_int/(Dmn_int*Dim_v*(1+2*Dim_a+Dim_a.^2));
G_diff1=G_diff1*(-exp(Dim_v+Dim_v*Dim_a)+exp(Dim_v+Dim_v*Dim_a)*Dim_v+ ...
exp(Dim_v+Dim_v*Dim_a)*Dim_v*Dim_a+1)*exp(-Dim_v-Dim_v*Dim_a);
G_diff2=-Dim_b*R*Temp*V_int*C0_mn*delta_int/(Dmn_int*Dim_v*(1+Dim_a+2*Dim_b+2*Dim_a*Dim_b+ ...
Dim_b^2+Dim_b^2*Dim_a));
G_diff2=G_diff2*(Dim_a*exp(Dim_v+Dim_v*Dim_b)+Dim_a*Dim_b*exp(Dim_v+Dim_v*Dim_b)+ ...
Dim_b*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)-Dim_a*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)- ...
Dim_v*Dim_b*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)+Dim_a*exp(Dim_v+Dim_v*Dim_a)- ...
Dim_v*Dim_b^2*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)- ...
Dim_v*Dim_b^2*Dim_a*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)-Dim_a- ...
Dim_v*Dim_a*Dim_b*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)-Dim_a*Dim_b- ...
Dim_b*exp(Dim_v+Dim_v*Dim_a))*exp(-2*Dim_v-Dim_v*Dim_b-Dim_v*Dim_a);
G_diff=(G_diff1+G_diff2)/100; % [J/mol]
if Gchem<0
G_diff_min=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,-1e-10);
else
G_diff_min=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,1e-10);
end
% G_friction: Energy dissipation due to friction, intrinsic interface mobility
M0_int=[2.7e-6 0.035 1.7e-5 4e-7]; % [m3.m/(J.s)]
QM_int=[145e3 147e3 140e3 140e3]; % [J/mol]
% Corresponding to
% Line 1: J. Zhu, H. Chen, Acta 2017;
% Line 2: M. Hillert et al, Scripta 2006;
% Line 3: J.J. Wits et al, Acta 2000;
% Line 4: G.P. Krielaart et al, MSE A 1997;
M_int=M0_int(1)/7.1e-6; % [mol.m/(J.s)]
Mobility=M_int*exp(-QM_int(1)/(R*Temp)); % [mol.m/(J.s)]
G_friction=V_int./Mobility; % [J/mol]
if Gchem>=0
[sol1]=vpasolve(Gchem-G_friction-G_diff,V_int,[1e-10 4e-5],'random',true);
else
[sol1]=vpasolve(Gchem-G_friction-G_diff,V_int,[-4e-5 -1e-10],'random',true);
end
Velocity=double(sol1);
exitflag=1;
if length(Velocity)>1
SolIndex=find(abs(Velocity)==min(abs(Velocity)));
Velocity=Velocity(SolIndex);
end
if abs(Velocity)>abs((Gchem-G_diff_min)*Mobility)
Velocity=(Gchem-G_diff_min)*Mobility;
end
if isempty(sol1)
Velocity=0;
exitflag=0;
end
else
Velocity=0;
exitflag=0;
end
end
end
else
ff=@(x)solute_drag_fun_soft_impingement(x,Temp,C0_mn,wC_A,wC_F,Ux,Xneq,Xpeq,X0,DC,kafang,Rbcc,SN,distance,hardflag);
opts=optimset('Display','off','Algorithm',{'levenberg-marquardt',0.005},'MaxFunEvals',1000,'MaxIter',1000,'TolFun',1e-6);% option settings for fsolve
SolFlag=0;
v0=[V_previous 1e-6 1e-7 1e-8 1e-9];
jj=1;
temp_out=[];
while SolFlag~=1
x0=[X0+(Xpeq-X0).*rand(1,1) X0 v0(jj)];
[out,fval,exitflag]=fsolve(ff,x0,opts); % [Xip Xpm Velocity]
if jj==length(v0)
Xip=[];
Xpm=[];
Velocity=[];
DiffLL=distance-Rbcc;
SolFlag=1;
end
if out(1)>X0 && (out(2)>0 && out(2)<0.8*4.6) && exitflag>0 && ~(out(1)>Xpeq && out(2)<out(1)) && ...
~(out(3)<0 && (CyclicFlag<1 || (CyclicFlag==1 && tt<CycleStart)))
Xip=out(1);
Xpm=out(2);
Velocity=out(3);
DiffLL=distance-Rbcc;
SolFlag=1;
end
temp_out=[temp_out;out];
jj=jj+1;
end
softflag=1;
if isempty(Xip)
if Rbcc<distance
Xip=(X0-Rbcc^3/distance^3.*Xneq)./(1-Rbcc^3/distance^3);
if Xip>Xpeq && TransDir==1 && tt<CycleStart
Xip=Xpeq;
end
else
Xip=Xpeq;
end
DiffLL=0;
Xpm=Xip;
softflag=1;
Gchem=kafang*(Xpeq-Xip); % [J/mol]
if Gchem<0
G_diff_min=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,-1e-10);
else
G_diff_min=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,1e-10);
end
if abs(Gchem)>abs(G_diff_min)
syms V_int; % [m/s]
syms Dim_a Dim_b Dim_v G_diff1 G_diff2 G_diff G_friction;
%% Directly using the integrated results to calculate dissipation energy due to trans-diffusion G_diss
Dim_a=Dmn_int*(deltaE_Mn-E0)/(R*Temp*V_int*delta_int); % dimensionless parameter a
Dim_b=Dmn_int*(deltaE_Mn+E0)/(R*Temp*V_int*delta_int); % dimensionless parameter b
Dim_v=abs(V_int*delta_int/Dmn_int); % dimensionless parameter v
Dim_v=abs(Dim_v); % add on April 24,2020
G_diff1=Dim_a.^2*R*Temp*V_int*C0_mn*delta_int/(Dmn_int*Dim_v*(1+2*Dim_a+Dim_a.^2));
G_diff1=G_diff1*(-exp(Dim_v+Dim_v*Dim_a)+exp(Dim_v+Dim_v*Dim_a)*Dim_v+ ...
exp(Dim_v+Dim_v*Dim_a)*Dim_v*Dim_a+1)*exp(-Dim_v-Dim_v*Dim_a);
G_diff2=-Dim_b*R*Temp*V_int*C0_mn*delta_int/(Dmn_int*Dim_v*(1+Dim_a+2*Dim_b+2*Dim_a*Dim_b+ ...
Dim_b^2+Dim_b^2*Dim_a));
G_diff2=G_diff2*(Dim_a*exp(Dim_v+Dim_v*Dim_b)+Dim_a*Dim_b*exp(Dim_v+Dim_v*Dim_b)+ ...
Dim_b*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)-Dim_a*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)- ...
Dim_v*Dim_b*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)+Dim_a*exp(Dim_v+Dim_v*Dim_a)- ...
Dim_v*Dim_b^2*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)- ...
Dim_v*Dim_b^2*Dim_a*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)-Dim_a- ...
Dim_v*Dim_a*Dim_b*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)-Dim_a*Dim_b- ...
Dim_b*exp(Dim_v+Dim_v*Dim_a))*exp(-2*Dim_v-Dim_v*Dim_b-Dim_v*Dim_a);
G_diff=(G_diff1+G_diff2)/100; % [J/mol]
if Gchem<0
G_diff_min=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,-1e-10);
else
G_diff_min=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,1e-10);
end
% G_friction: Energy dissipation due to friction, intrinsic interface mobility
M0_int=[2.7e-6 0.035 1.7e-5 4e-7]; % [m3.m/(J.s)]
QM_int=[145e3 147e3 140e3 140e3]; % [J/mol]
% Corresponding to
% Line 1: J. Zhu, H. Chen, Acta 2017;
% Line 2: M. Hillert et al, Scripta 2006;
% Line 3: J.J. Wits et al, Acta 2000;
% Line 4: G.P. Krielaart et al, MSE A 1997;
M_int=M0_int(1)/7.1e-6; % [mol.m/(J.s)]
Mobility=M_int*exp(-QM_int(1)/(R*Temp)); % [mol.m/(J.s)]
G_friction=V_int./Mobility; % [J/mol]
if Gchem>=0
[sol1]=vpasolve(Gchem-G_friction-G_diff,V_int,[1e-10 4e-5],'random',true);
else
[sol1]=vpasolve(Gchem-G_friction-G_diff,V_int,[-4e-5 -1e-10],'random',true);
end
Velocity=double(sol1);
if length(Velocity)>1
SolIndex=find(abs(Velocity)==min(abs(Velocity)));
Velocity=Velocity(SolIndex);
exitflag=1;
end
if abs(Velocity)>abs((Gchem-G_diff_min)*Mobility)
Velocity=(Gchem-G_diff_min)*Mobility;
end
if isempty(sol1)
Velocity=0;
exitflag=0;
end
else
Velocity=0;
exitflag=0;
end
end
end
%% Directly using the integrated results to calculate dissipation energy due to trans-diffusion G_diss
clear V_int Dim_a Dim_b Dim_v G_diff1 G_diff2 G_diff G_friction;
Dim_a=Dmn_int*(deltaE_Mn-E0)/(R*Temp*Velocity*delta_int); % dimensionless parameter a
Dim_b=Dmn_int*(deltaE_Mn+E0)/(R*Temp*Velocity*delta_int); % dimensionless parameter b
Dim_v=abs(Velocity*delta_int/Dmn_int); % dimensionless parameter v
Gdiff1=Dim_a.^2*R*Temp*Velocity*C0_mn*delta_int/(Dmn_int*Dim_v*(1+2*Dim_a+Dim_a.^2));
Gdiff1=Gdiff1*(-exp(Dim_v+Dim_v*Dim_a)+exp(Dim_v+Dim_v*Dim_a)*Dim_v+ ...
exp(Dim_v+Dim_v*Dim_a)*Dim_v*Dim_a+1)*exp(-Dim_v-Dim_v*Dim_a);
Gdiff2=-Dim_b*R*Temp*Velocity*C0_mn*delta_int/(Dmn_int*Dim_v*(1+Dim_a+2*Dim_b+2*Dim_a*Dim_b+ ...
Dim_b^2+Dim_b^2*Dim_a));
Gdiff2=Gdiff2*(Dim_a*exp(Dim_v+Dim_v*Dim_b)+Dim_a*Dim_b*exp(Dim_v+Dim_v*Dim_b)+ ...
Dim_b*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)-Dim_a*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)- ...
Dim_v*Dim_b*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)+Dim_a*exp(Dim_v+Dim_v*Dim_a)- ...
Dim_v*Dim_b^2*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)- ...
Dim_v*Dim_b^2*Dim_a*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)-Dim_a- ...
Dim_v*Dim_a*Dim_b*exp(2*Dim_v+Dim_v*Dim_b+Dim_v*Dim_a)-Dim_a*Dim_b- ...
Dim_b*exp(Dim_v+Dim_v*Dim_a))*exp(-2*Dim_v-Dim_v*Dim_b-Dim_v*Dim_a);
Gdiff=(Gdiff1+Gdiff2)/100; % [J/mol]
Gdiff0=(2*C0_mn*deltaE_Mn+R*Temp*C0_mn*(exp(-2*deltaE_Mn/(R*Temp))-1))/100; % dissipation when v_int = 0[J/mol]
if Xip>Xpeq
Gdiff0=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,-1e-10);
end
if isnan(Gdiff) % Gdiff is NaN
Gdiff=(2*C0_mn*deltaE_Mn+R*Temp*C0_mn*(exp(-2*deltaE_Mn/(R*Temp))-1))/100; % [J/mol]
if Xip>Xpeq
Gdiff=minGdiff(Dmn_int,deltaE_Mn,E0,R,Temp,delta_int,C0_mn,-1e-10);
end
end
% G_friction: Energy dissipation due to friction, intrinsic interface mobility
M0_int=[2.7e-6 0.035 1.7e-5 4e-7]; % [m3.m/(J.s)]
QM_int=[145e3 147e3 140e3 140e3]; % [J/mol]
% Corresponding to
% Line 1: J. Zhu, H. Chen, Acta 2017;
% Line 2: M. Hillert et al, Scripta 2006;
% Line 3: J.J. Wits et al, Acta 2000;
% Line 4: G.P. Krielaart et al, MSE A 1997;
M_int=M0_int(1)/7.1e-6; % [mol.m/(J.s)]
Mobility=M_int*exp(-QM_int(1)/(R*Temp)); % [mol.m/(J.s)]
Gfriction=Velocity./Mobility; % [J/mol]
Gdiss=Gfriction+Gdiff; % [J/mol]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Gchem=kafang*(Xpeq-Xip); % [J/mol]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Drag=[Velocity Gchem Gfriction Gdiff Gdiss exitflag]';
Diffusion=[Xpm Xip DiffLL Rbcc Xneq Xpeq softflag]';