-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathruntime_local.py
146 lines (135 loc) · 3.95 KB
/
runtime_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import request_pb2
import struct
import socket
import time
import sys
import numpy as np
import cv
import cv2
import time
import collections
import face_util
import img_util
import argparse
cascPath = "opencv_xml/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
print("capture")
cap = cv2.VideoCapture(0)
print("here?")
#print(cap.get(3))
#print(cap.get(4))
cap.set(3,640)
#cap.set(4,400)
cap.set(4,480)
cnt = 0
beg = time.time()
last_face_t = 0
puttext_time = 0
lastlabel = ""
label_list = []
print("start reading")
face_mode = False
fps_list = []
last_fps_update = time.time()
cur_fps = -1
class Option:
def __init__(self, others=False, sharing=False):
self.others = others
self.sharing = sharing
self.gpu = True
parser = argparse.ArgumentParser(prog='mcdnn')
parser.add_argument('--cpu', action="store_true", default=False)
parser.add_argument('--nocompact', action="store_false", default=False)
parser.add_argument('--nosharing', action="store_false", default=False)
parser.add_argument('--others', action="store_true", default=False)
args = parser.parse_args()
o = Option()
if args.nocompact:
o.target = "D0"
else:
o.target = "C0"
o.others = args.others
o.sharing = not args.nosharing
o.gpu = not args.cpu
fn1, fn2, others = face_util.load_net(o)
compute_t = 0
ct = 0
while True:
ret, frame = cap.read()
if not ret:
continue
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.resize(gray, (160, 120), interpolation = cv2.INTER_CUBIC)
#gray = cv2.resize(gray, (320, 240), interpolation = cv2.INTER_CUBIC)
put = False
face = False
now = time.time()
fps_list.append(now)
for i in fps_list:
if now - i > 1:
fps_list.remove(i)
faces = []
if face_mode:# and (now-last_face_t) > 5:
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
#minSize=(62, 62),
minSize=(31, 31),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
#last_face_t = now
#print(faces)
#cv2.rectangle(frame, (0, 0), (100,100) + (400, -100), (0,0,255));
cv2.rectangle(frame, (0,0), (640,50), (0,0,0), -1)
t1, t2 = 0,0
for x, y, w, h in faces:
#print("Face found!")
x, y, w, h = map(lambda x:4*x, [x,y,w,h])
cv2.rectangle(frame, (x,y), (x+w,y+h), (0,0,255))
retval, buf = cv2.imencode(".jpg", frame[y:y+h, x:x+w])
t1 = time.time()
label = face_util.detect_face(img_util.load_image_from_memory(buf), fn1, fn2, others, o.sharing)
t2 = time.time()
compute_t = t2-t1
put = True
lastlabel = label
label_list.append( (now, label) )
puttext_time = now
face = True
counter = collections.Counter()
for i in label_list:
if now - i[0] > 3:
label_list.remove(i)
else:
counter[i[1]] += 1
if face and len(counter) > 0:
lastlabel = counter.most_common() [0][0]
if now-puttext_time < 10:
cv2.putText(frame,lastlabel, (10,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2)
if now-last_fps_update > 1:
last_fps_update = now
fps = []
prev = fps_list[0]
for i in fps_list[1:]:
fps.append(i-prev)
prev = i
if len(fps) > 0:
cur_fps = len(fps)/float(sum(fps))
else:
cur_fps = -1
ct = compute_t * 1000
cv2.putText(frame,"fps: %.2f" % cur_fps, (550,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2)
cv2.putText(frame,"dnn: %.2fms" % ct, (400,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2)
cv2.imshow('frame', frame)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
elif key & 0xFF == ord('f'):
face_mode = not face_mode
#cnt += 1
#if cnt == 100: break
end = time.time()
print(cnt/float(end-beg))
cap.release()
cv2.destroyAllWindows()