forked from nguyenvo09/fake_news_detection_deep_learning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrawl_snopes.py
160 lines (142 loc) · 4.5 KB
/
crawl_snopes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import sys
import numpy as np
legitimate_websites=['snopes.com', 'factcheck.org', 'politifact.com', 'truthorfiction.com', 'opensecrets.org', 'slayer.com', 'slayer.net']
import json
import scrapy
from scrapy.crawler import CrawlerProcess
import requests
import time
import os
from selenium import webdriver
from shutil import copyfile
import datetime
from bs4 import BeautifulSoup
from bs4.element import Comment
import urllib
from os import listdir
from os.path import isfile, join
import pandas as pd
import random
import os
import requests
def trySelenimum(infile='', outfolder='crawled_friendship_DataB'):
''' Crawling follower following relationship on doesfollow.com website.
Using selenium keke'''
fin = open('snopes_ground_truth.csv', 'r')
fin.readline()
pages = []
for line in fin:
line = line.replace('\n', '')
args = line.split(',')
page = args[0]
pages.append(page)
assert len(pages) == 562
# base_link = 'https://www.snopes.com/tag/fake-news'
# links = ['%s/page/%s/' % (base_link, (i+1)) for i in xrange(50)]
# driver.set_preference("browser.privatebrowsing.autostart", True)
if not os.path.exists('crawled_websites'):
os.mkdir('crawled_websites')
cnt = 0
for i in xrange(len(pages)):
page = pages[i]
try:
print(page)
response = requests.get(page)
cnt += 1
with open('crawled_websites/%s.html' % i, 'wb') as f:
f.write('%s\n' % page)
content = response.content
f.write(content)
# cnt += 1
if cnt % 10 == 0:
time.sleep(30)
except:
print "Unexpected error:", sys.exc_info()[0]
def start_cralwer(inFile='HOAXY_unique_URLs.txt'):
fin = open(inFile, 'rb')
URLs = []
cnt = 0
for line in fin:
args = line.split()
if len(args) == 3:
continue
cnt += 1
if cnt <= 2778:
continue
URLs.append(args[0])
cnt = 2778
for url in URLs:
cnt+=1
try:
print url
response = requests.get(url)
with open('crawled_websites/%s.html' % cnt, 'wb') as f:
f.write('%s\n' % url)
f.write(response.content)
if cnt % 10 == 0:
time.sleep(30)
except:
print "Unexpected error:", sys.exc_info()[0]
def get_links_each_page():
fout = open('fake_news_link.txt', 'w')
infiles = ['fake_news_page_%s.html' % i for i in xrange(1, 31)]
dict_links = {}
for infile in infiles:
fin = open(infile, 'r')
content = fin.read()
soup = BeautifulSoup(content, 'html')
# soup.find('article', )
elems = soup.find_all("a", {"class": ["category-fake-news"]}, href=True)
for e in elems:
x = e['href']
dict_links[x] = 1
# print(e['href'])
# print(e.get('href'))
for url_ in dict_links:
fout.write('%s\n' % (url_))
def stat_snope_dataset():
# fin = open('snopes.csv', 'r')
parts = pd.read_csv('snopes.csv', index_col=False)
pages = zip(parts['snopes_page'], parts['claim_label'])
dict_pages = {}
true_news = {}
fake_news = {}
for p, ll in pages:
if ll == 'true':
true_news[p] = 1
elif ll == 'false':
fake_news[p] = 1
if ll == 'false' or ll == 'true':
dict_pages[p] = ll
print(len(true_news), len(fake_news), len(dict_pages))
# print(dict_pages.keys()[:5])
# print(dict_pages.values()[:5])
print(dict_pages.values().count('true'), dict_pages.values().count('false'))
print(len(dict_pages))
# x = fake_news[:281]
# print(x[:5])
fake_news = fake_news.keys()
true_news = true_news.keys()
random.shuffle(fake_news)
fake_news = fake_news[:281]
assert len(fake_news) == 281
# print(fake_news[:5])
assert len(true_news) == 281
news = true_news + fake_news
assert len(news) == 562, len(news)
fin = open('snopes.csv', 'r')
fout = open('snopes_ground_truth.csv', 'w')
header = fin.readline()
fout.write(header)
dict_repeat = {}
for line in fin:
line = line.replace('\n', '')
args = line.split(',')
page = args[0]
if page in news and page not in dict_repeat:
dict_repeat[page] = 1
fout.write('%s\n' % line)
if __name__ == '__main__':
trySelenimum()
# get_links_each_page()
# stat_snope_dataset()