-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_ready.py
79 lines (49 loc) · 2.72 KB
/
get_ready.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
# coding: utf-8
# In[15]:
import numpy as np
import nibabel as nib
import glob
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt
from tifffile import imsave
from sklearn.preprocessing import MinMaxScaler
# In[16]:
scaler = MinMaxScaler()
# In[17]:
t2_list = sorted(glob.glob('BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/*/*t2.nii'))
t1ce_list = sorted(glob.glob('BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/*/*t1ce.nii'))
flair_list = sorted(glob.glob('BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/*/*flair.nii'))
mask_list = sorted(glob.glob('BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/*/*seg.nii'))
# In[21]:
#this is for training folder:
for img in range(len(t2_list)): #Using t1_list as all lists are of same size
print("Now preparing image and masks number: ", img)
temp_image_t2=nib.load(t2_list[img]).get_fdata()
temp_image_t2=scaler.fit_transform(temp_image_t2.reshape(-1, temp_image_t2.shape[-1])).reshape(temp_image_t2.shape)
temp_image_t1ce=nib.load(t1ce_list[img]).get_fdata()
temp_image_t1ce=scaler.fit_transform(temp_image_t1ce.reshape(-1, temp_image_t1ce.shape[-1])).reshape(temp_image_t1ce.shape)
temp_image_flair=nib.load(flair_list[img]).get_fdata()
temp_image_flair=scaler.fit_transform(temp_image_flair.reshape(-1, temp_image_flair.shape[-1])).reshape(temp_image_flair.shape)
temp_mask=nib.load(mask_list[img]).get_fdata()
temp_mask=temp_mask.astype(np.uint8)
temp_mask[temp_mask==4] = 3 #Reassign mask values 4 to 3
#print(np.unique(temp_mask))
temp_combined_images = np.stack([temp_image_flair, temp_image_t1ce, temp_image_t2], axis=3)
temp_combined_images=temp_combined_images[56:184, 56:184, 13:141]
temp_mask = temp_mask[56:184, 56:184, 13:141]
val, counts = np.unique(temp_mask, return_counts=True)
if (1 - (counts[0]/counts.sum())) > 0.01: #At least 1% useful volume with labels that are not 0
print("Save Me")
temp_mask= to_categorical(temp_mask, num_classes=4)
np.save('BraTS2020_TrainingData/input_data_3channels/images/image_'+str(img)+'.npy', temp_combined_images)
np.save('BraTS2020_TrainingData/input_data_3channels/masks/mask_'+str(img)+'.npy', temp_mask)
else:
print("I am useless")
# In[22]:
import splitfolders # or import split_folders
input_folder = 'BraTS2020_TrainingData/input_data_3channels/'
output_folder = 'BraTS2020_TrainingData/input_data_128/'
# Split with a ratio.
# To only split into training and validation set, set a tuple to `ratio`, i.e, `(.8, .2)`.
splitfolders.ratio(input_folder, output=output_folder, seed=42, ratio=(.75, .25), group_prefix=None)