-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathRandomWalkSims.py
executable file
·538 lines (487 loc) · 16.2 KB
/
RandomWalkSims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
"""
Library for simulation of diffusion types
Henrik Dahl Pinholt
"""
import numpy as np
from tqdm import tqdm
from fbm import fgn, times
# import multiprocess as mp
import matplotlib.pyplot as plt
def SquareDist(x0, x1, y0, y1):
"""Computes the squared distance between the two points (x0,y0) and (y1,y1)
Returns
-------
float
squared distance between the two input points
"""
return (x1 - x0) ** 2 + (y1 - y0) ** 2
def msd(x, y, frac):
"""Computes the mean squared displacement (msd) for a trajectory (x,y) up to
frac*len(x) of the trajectory.
Parameters
----------
x : list-like
x-coordinates for the trajectory.
y : list-like
y-coordinates for the trajectory.
frac : float in [0,1]
Fraction of trajectory duration to compute msd up to.
Returns
-------
iterable of lenght int(len(x)*frac)
msd for the trajectory
"""
N = int(len(x) * frac)
msd = []
for lag in range(1, N):
msd.append(
np.mean(
[
SquareDist(x[j], x[j + lag], y[j], y[j + lag])
for j in range(len(x) - lag)
]
)
)
return np.array(msd)
def Get_params(numparams, dt, D):
"""Generate a random set of parameters within the bounds presented in Phys. Rev. E 100, 032410 2019.
For each generation, four parameter sets are generated. One for normal diffusion, confined diffusion,
directed motion and fractional brownian motion.
Parameters
----------
numparams : int
Number of parameter sets to generate for each diffusion type.
dt : float > 0
time-step to use for the trace generation.
D : float > 0
Diffusion constant to use for the trace generation.
Returns
-------
numpy ndarray of shape (numparams,13)
parameter sets for the numparams trajectories of each diffusion type.
1. Duration of each normal difffusion trace
2. Duration of each anomalous difffusion trace
3. Duration of each confined difffusion trace
4. Duration of each directed motion trace
5. Diffusion constant for each normal diffusion trace
6. Time increment for each normal diffusion trace
7. r_c, confinement radius for confined diffusion traces
8. v, average velocity of persistent motion traces
9. alpha, alpha parameter in fractional brownian motion simulation
10. sigmaND, localization errors for normal diffusion
11. sigmaCD, localization errors for confined diffusion
12. sigmaDM, localization errors for directed motion
13. sigmaND, localization errors for normal diffusion
"""
# bounds from table 1 Kowalek et al 2020
Nmin, Nmax = 30, 600
Bmin, Bmax = 1, 6
Rmin, Rmax = 1, 17
alphamin, alphamax = 0.3, 0.7
Qmin, Qmax = 1, 9
# Gen parameters
Q = np.random.uniform(Qmin, Qmax, size=numparams)
Q1, Q2 = Q, Q
NsND = np.random.randint(Nmin, Nmax + 1, size=numparams)
NsAD = np.random.randint(Nmin, Nmax + 1, size=numparams)
NsCD = np.random.randint(Nmin, Nmax + 1, size=numparams)
NsDM = np.random.randint(Nmin, Nmax + 1, size=numparams)
TDM = NsDM * dt
B = np.random.uniform(Bmin, Bmax, size=numparams)
r_c = np.sqrt(D * NsCD * dt / B) # solving for r_c in eq. 8 Kowalek
R = np.random.uniform(Rmin, Rmax, size=numparams)
v = np.sqrt(R * 4 * D / TDM) # solving for v in eq. 7 Kowalek
alpha = np.random.uniform(alphamin, alphamax, size=numparams)
# Compute sigma for ND, AD, CD from eq. 12 Kowalek
sigmaND = np.sqrt(D * dt) / Q1
sigmaAD = np.sqrt(D * dt) / Q1
sigmaCD = np.sqrt(D * dt) / Q1
# Compute sigma for DM from eq. 12 Kowalek
sigmaDM = np.sqrt(D * dt + v ** 2 * dt ** 2) / Q2
return np.array(
[
NsND,
NsAD,
NsCD,
NsDM,
D * np.ones(numparams),
dt * np.ones(numparams),
r_c,
v,
alpha,
sigmaND,
sigmaAD,
sigmaCD,
sigmaDM,
]
).T
def Gen_normal_diff(D, dt, sigma1s, Ns, withlocerr=True):
"""Generate a set of normal diffusion traces
Parameters
----------
D : float
Diffusion constant.
dt : float
Time step for each increment.
sigma1s : list-like
Localization errors for each trace.
Ns : list-like of integers
Duration of each trace.
withlocerr : Boolean
Wether to simulate the trace with localization errors or not.
Returns
-------
list of length len(Ns)
list containing the two-dimensional simulated trajectories as an array of
shape (N,2) where N is the duration of the trajectory.
"""
traces = []
for n, sig in zip(Ns, sigma1s):
xsteps = np.random.normal(0, np.sqrt(2 * D * dt), size=n)
ysteps = np.random.normal(0, np.sqrt(2 * D * dt), size=n)
x, y = (
np.concatenate([[0], np.cumsum(xsteps)]),
np.concatenate([[0], np.cumsum(ysteps)]),
)
if withlocerr:
x_noisy, y_noisy = (
x + np.random.normal(0, sig, size=x.shape),
y + np.random.normal(0, sig, size=y.shape),
)
traces.append(np.array([x_noisy, y_noisy]).T)
else:
traces.append(np.array([x, y]).T)
return traces
def Gen_directed_diff(D, dt, vs, sigmaDM, Ns, beta_set=None, withlocerr=True):
"""Generate a set of directed motion traces.
Parameters
----------
D : float
Diffusion constant.
dt : float
Time step for each increment.
vs : float
Average drift speed.
sigmaDM : list-like
Localization errors for each trace.
Ns : list-like of integers
Duration of each trace.
beta_set : list-like of floats
Drift angle in the 2D plane.
withlocerr : Boolean
Wether to simulate the trace with localization errors or not.
Returns
-------
list of length len(Ns)
list containing the two-dimensional simulated trajectories as an array of
shape (N,2) where N is the duration of the trajectory.
"""
traces = []
for v, n, sig in zip(vs, Ns, sigmaDM):
if beta_set is None:
beta = np.random.uniform(0, 2 * np.pi)
else:
beta = beta_set
dx, dy = v * dt * np.cos(beta), v * dt * np.sin(beta)
xsteps = np.random.normal(0, np.sqrt(2 * D * dt), size=n) + dx
ysteps = np.random.normal(0, np.sqrt(2 * D * dt), size=n) + dy
x, y = (
np.concatenate([[0], np.cumsum(xsteps)]),
np.concatenate([[0], np.cumsum(ysteps)]),
)
if withlocerr:
x_noisy, y_noisy = (
x + np.random.normal(0, sig, size=x.shape),
y + np.random.normal(0, sig, size=y.shape),
)
traces.append(np.array([x_noisy, y_noisy]).T)
else:
traces.append(np.array([x, y]).T)
return traces
def _Take_subdiff_step(x0, y0, D, dt, r_c, nsubsteps=100):
"""Compute the step for a confined diffusing particle.
The step is computed by propagating the particle for nsubsteps as a normal
random walker with a reduced timestep and including a reflective circular boundary of radius r_c.
The final step is then taken as the step from initial to final position.
Parameters
----------
x0 : float
Initial x-coordinate.
y0 : float
Initial y-coordinate.
D : float
Diffusion constant.
dt : float
Time step.
r_c : float
Confinement radius beyond which no motion can occur.
nsubsteps : int
Number of substeps to take in computing the step.
Returns
-------
tuple of length 2
final x and y coordinates for a single step
"""
dt_prim = dt / nsubsteps
for i in range(nsubsteps):
x1, y1 = (
x0 + np.random.normal(0, np.sqrt(2 * D * dt_prim)),
y0 + np.random.normal(0, np.sqrt(2 * D * dt_prim)),
)
if np.sqrt(x1 ** 2 + y1 ** 2) < r_c:
x0, y0 = x1, y1
return x1, y1
def Gen_confined_diff(D, dt, r_cs, sigmaCD, Ns, withlocerr=True, multiprocess=True):
"""Generate confined diffusion trajectories.
Parameters
----------
D : float
Diffusion constant.
dt : float
Time step for each increment.
r_cs : list-like of floats
Confinement radii beyond which no motion can occur.
sigmaCD : list-like of floats >0
Localization errors for each trace.
Ns : list-like of integers
Duration of each trace.
withlocerr : Boolean
Wether to simulate the traces with localization errors or not.
multiprocess : Boolean
Wether to use multiprocessing to generate the traces in parallel.
Returns
-------
list of length len(Ns)
list containing the two-dimensional simulated trajectories as an array of
shape (N,2) where N is the duration of the trajectory.
"""
def get_trace(x):
D, dt, r_c, sig, n = x
xs, ys = [], []
x0, y0 = 0, 0
for i in range(n + 1):
xs.append(x0)
ys.append(y0)
x0, y0 = _Take_subdiff_step(x0, y0, D, dt, r_c)
x, y = np.array(xs), np.array(ys)
if withlocerr:
x_noisy, y_noisy = (
x + np.random.normal(0, sig, size=x.shape),
y + np.random.normal(0, sig, size=y.shape),
)
else:
x_noisy, y_noisy = x, y
return np.array([x_noisy, y_noisy]).T
args = [(D, dt, r, sig, N) for r, sig, N in zip(r_cs, sigmaCD, Ns)]
if multiprocess:
print('closed mulitprocessing')
# with mp.Pool(mp.cpu_count()) as p:
# traces = p.map(get_trace, args)
else:
traces = []
for i in range(len(Ns)):
traces.append(get_trace(args[i]))
return traces
def Gen_anomalous_diff(D, dt, alphs, sigmaAD, Ns, withlocerr=True):
"""Generate traces of anomalous diffusion with fractional brownian motion.
Parameters
----------
D : float
Diffusion constant.
dt : float
Time step for each increment.
alphs : list-like of floats
Alpha scaling for the trajectories.
sigmaAD : list-like of floats
Localization errors for each trace..
Ns : list-like of integers
Duration of each trace.
withlocerr : Boolean
Wether to simulate the traces with localization errors or not.
Returns
-------
list of length len(Ns)
list containing the two-dimensional simulated trajectories as an array of
shape (N,2) where N is the duration of the trajectory.
"""
Hs = alphs / 2
traces = []
for n, sig, H in zip(Ns, sigmaAD, Hs):
n = int(n)
stepx, stepy = (
np.sqrt(2 * D * dt) * fgn(n=n, hurst=H, length=n, method="daviesharte"),
np.sqrt(2 * D * dt) * fgn(n=n, hurst=H, length=n, method="daviesharte"),
)
x, y = (
np.concatenate([[0], np.cumsum(stepx)]),
np.concatenate([[0], np.cumsum(stepy)]),
)
x_noisy, y_noisy = (
x + np.random.normal(0, sig, size=x.shape),
y + np.random.normal(0, sig, size=y.shape),
)
if withlocerr:
traces.append(np.array([x_noisy, y_noisy]).T)
else:
traces.append(np.array([x, y]).T)
return traces
#
# def _Update_binary_state(state_n, p_shift):
# """Update internal state in a binary HMM.
#
# Parameters
# ----------
# state_n : in
# Current HMM state$.
# p_shift : float in [0,1]
# Transition probability.
#
# Returns
# -------
# int
# output state.
#
# """
# randnum = np.random.uniform()
# states = np.array([0, 1])
# if randnum <= p_shift:
# return states[states != state_n][0]
# else:
# return states[states == state_n][0]
#
#
# def Gen_binary_state_series(p_shift, N):
# """Generate a binary state series of HMM states given symmetric transition probabilities.
#
# Parameters
# ----------
# p_shift : float in [0,1]
# Transition probability.
# N : integer
# Duration of trajectory.
#
# Returns
# -------
# list-like
# HMM state trajectory.
#
# """
# start_state = np.random.randint(2)
# statehist = np.zeros(N)
# statehist[0] = start_state
# for i in range(1, N):
# statehist[i] = _Update_binary_state(statehist[i - 1], p_shift)
# return statehist
#
#
# def Gen_binary_state_series_uneven(p_shift1, p_shift2, N):
# """Generate a binary series of HMM states where each state has a different transition probability.
#
# Parameters
# ----------
# p_shift1 : float in [0,1]
# Transition probability for state 0.
# p_shift2 : float in [0,1]
# Transition probability for state 1.
# N : int
# Duration of trajectory.
#
# Returns
# -------
# list-like
# HMM state trajectory.
#
# """
# start_state = np.random.randint(2)
# statehist = np.zeros(N)
# statehist[0] = start_state
# for i in range(1, N):
# if statehist[i - 1] == 0:
# statehist[i] = _Update_binary_state(statehist[i - 1], p_shift1)
# else:
# statehist[i] = _Update_binary_state(statehist[i - 1], p_shift2)
# return statehist
#
#
# def Get_shifting_diff(diff_gens, params, state, lens, plot=False):
# """Generates binary state-shifting diffusion between the two trace generators given
# in diff_gens.
#
# Parameters
# ----------
# diff_gens : list of length 2.
# Should contain two of the four possible trace-generators:
# - Gen_normal_diff
# - Gen_directed_diff
# - Gen_confined_diff
# - Gen_anomalous_diff.
# params : list of length 2.
# Should contain the parameters to .
# state : type
# Description of parameter `state`.
# lens : type
# Description of parameter `lens`.
# plot : type
# Description of parameter `plot`.
#
# Returns
# -------
# type
# Description of returned object.
#
# """
# diff1, diff2 = [diff_gens[i](**params[i]) for i in range(2)]
# if len(state) == 1 and state[0] == 0:
# trace = diff1[0][:-1]
# elif len(state) == 1 and state[0] == 1:
# trace = diff2[0][:-1]
# else:
# c0, c1 = 0, 0
# stepsx, stepsy = [], []
# for s in state:
# trace_choice = [diff1, diff2][s][[c0, c1][s]]
# step_comp = trace_choice[1:] - trace_choice[:-1]
# stepsx += list(step_comp[:, 0])
# stepsy += list(step_comp[:, 1])
# # steps = np.concatenate([steps, step_comp])
# if s == 0:
# c0 += 1
# else:
# c1 += 1
#
# trace = np.concatenate(
# [
# np.array([[0, 0]]),
# np.array([np.cumsum(stepsx), np.cumsum(stepsy)]).T[:-1],
# ]
# )
# if len(trace) != np.sum(lens):
# # print(diff1, diff2, trace, cropped_diff1, cropped_diff2)
# print(diff1, diff2, trace) # , cropped_diff1, cropped_diff2)
# raise ValueError(
# f"{len(trace)},{state},{lens},{[len(i) for i in diff1],[len(i) for i in diff2]}"
# )
# # raise ValueError(
# # f"{len(trace)},{state},{c0,c1},{lens},{[len(i) for i in diff1],[len(i) for i in diff2]},{[len(i) for i in cropped_diff1],[len(i) for i in cropped_diff2]}"
# # )
# trace = np.array(trace)
# if plot:
# SLS = np.sqrt(np.sum((trace[1:] - trace[:-1]) ** 2, axis=1))
# frames = np.arange(len(SLS))
# n = 0
# cols = ["dimgrey", "darkred"]
# fig, ax = plt.subplots(1, 2, figsize=(8, 4))
#
# for s, l in zip(state, lens):
# ax[0].plot(
# trace[:, 0][n : n + l + 1], trace[:, 1][n : n + l + 1], c=cols[s]
# )
# ax[1].plot(
# frames[n : np.min([n + l + 1, len(SLS)])],
# SLS[n : np.min([n + l + 1, len(SLS)])],
# "o",
# c=cols[s],
# )
# n += l
# plt.show()
# return trace