-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathRand_Augment.py
124 lines (112 loc) · 5.68 KB
/
Rand_Augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageEnhance, ImageOps
import numpy as np
import random
class Rand_Augment():
def __init__(self, Numbers=None, max_Magnitude=None):
self.transforms = ['autocontrast', 'equalize', 'rotate', 'solarize', 'color', 'posterize',
'contrast', 'brightness', 'sharpness', 'shearX', 'shearY', 'translateX', 'translateY']
if Numbers is None:
self.Numbers = len(self.transforms) // 2
else:
self.Numbers = Numbers
if max_Magnitude is None:
self.max_Magnitude = 10
else:
self.max_Magnitude = max_Magnitude
fillcolor = 128
self.ranges = {
# these Magnitude range , you must test it yourself , see what will happen after these operation ,
# it is no need to obey the value in autoaugment.py
"shearX": np.linspace(0, 0.3, 10),
"shearY": np.linspace(0, 0.3, 10),
"translateX": np.linspace(0, 0.2, 10),
"translateY": np.linspace(0, 0.2, 10),
"rotate": np.linspace(0, 360, 10),
"color": np.linspace(0.0, 0.9, 10),
"posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int),
"solarize": np.linspace(256, 231, 10),
"contrast": np.linspace(0.0, 0.5, 10),
"sharpness": np.linspace(0.0, 0.9, 10),
"brightness": np.linspace(0.0, 0.3, 10),
"autocontrast": [0] * 10,
"equalize": [0] * 10,
"invert": [0] * 10
}
self.func = {
"shearX": lambda img, magnitude: img.transform(
img.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0),
Image.BICUBIC, fill=fillcolor),
"shearY": lambda img, magnitude: img.transform(
img.size, Image.AFFINE, (1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0),
Image.BICUBIC, fill=fillcolor),
"translateX": lambda img, magnitude: img.transform(
img.size, Image.AFFINE, (1, 0, magnitude * img.size[0] * random.choice([-1, 1]), 0, 1, 0),
fill=fillcolor),
"translateY": lambda img, magnitude: img.transform(
img.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * img.size[1] * random.choice([-1, 1])),
fill=fillcolor),
"rotate": lambda img, magnitude: self.rotate_with_fill(img, magnitude),
# "rotate": lambda img, magnitude: img.rotate(magnitude * random.choice([-1, 1])),
"color": lambda img, magnitude: ImageEnhance.Color(img).enhance(1 + magnitude * random.choice([-1, 1])),
"posterize": lambda img, magnitude: ImageOps.posterize(img, magnitude),
"solarize": lambda img, magnitude: ImageOps.solarize(img, magnitude),
"contrast": lambda img, magnitude: ImageEnhance.Contrast(img).enhance(
1 + magnitude * random.choice([-1, 1])),
"sharpness": lambda img, magnitude: ImageEnhance.Sharpness(img).enhance(
1 + magnitude * random.choice([-1, 1])),
"brightness": lambda img, magnitude: ImageEnhance.Brightness(img).enhance(
1 + magnitude * random.choice([-1, 1])),
"autocontrast": lambda img, magnitude: ImageOps.autocontrast(img),
"equalize": lambda img, magnitude: img,
"invert": lambda img, magnitude: ImageOps.invert(img)
}
def rand_augment(self):
"""Generate a set of distortions.
Args:
N: Number of augmentation transformations to apply sequentially. N is len(transforms)/2 will be best
M: Max_Magnitude for all the transformations. should be <= self.max_Magnitude """
M = np.random.randint(0, self.max_Magnitude, self.Numbers)
sampled_ops = np.random.choice(self.transforms, self.Numbers)
return [(op, Magnitude) for (op, Magnitude) in zip(sampled_ops, M)]
def __call__(self, image):
operations = self.rand_augment()
for (op_name, M) in operations:
operation = self.func[op_name]
mag = self.ranges[op_name][M]
image = operation(image, mag)
return image
def rotate_with_fill(self, img, magnitude):
# I don't know why rotate must change to RGBA , it is copy from Autoaugment - pytorch
rot = img.convert("RGBA").rotate(magnitude)
return Image.composite(rot, Image.new("RGBA", rot.size, (128,) * 4), rot).convert(img.mode)
def test_single_operation(self, image, op_name, M=-1):
'''
:param image: image
:param op_name: operation name in self.transforms
:param M: -1 stands for the max Magnitude in there operation
:return:
'''
operation = self.func[op_name]
mag = self.ranges[op_name][M]
image = operation(image, mag)
return image
if __name__ == '__main__':
# # this is for call the whole fun
# img_augment = Rand_Augment()
# img_origal = Image.open(r'0a38b552372d.png')
# img_final = img_augment(img_origal)
# plt.imshow(img_final)
# plt.show()
# print('how to call')
# this is for a single fun you want to test
img_augment = Rand_Augment()
img_origal = Image.open(r'0bfdedaa60b54078ab0fc3bc6582aa90.jpg')
for i in range(0, 10):
img_final = img_augment.test_single_operation(img_origal, 'invert', M=i)
plt.subplot(5, 2, i + 1)
plt.imshow(img_final)
plt.show()
print('how to test')