forked from razor1179/pytorch-kaldi-CGS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcore.py
executable file
·362 lines (289 loc) · 13 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
##########################################################
# pytorch-kaldi v.0.1
# Mirco Ravanelli, Titouan Parcollet
# Mila, University of Montreal
# October 2018
##########################################################
import sys
import configparser
import os
from utils import is_sequential_dict, model_init, optimizer_init, forward_model, progress
from data_io import load_counts
import numpy as np
import random
import torch
from distutils.util import strtobool
import time
import threading
from data_io import read_lab_fea, open_or_fd, write_mat
from utils import shift
def run_nn(data_name, data_set, data_end_index, fea_dict, lab_dict, arch_dict, cfg_file, processed_first,
next_config_file, if_prune=False, patterns=dict(), pattern_masks=dict(), if_apply_ghcgs=False, if_pattern_search=False):
# This function processes the current chunk using the information in cfg_file. In parallel, the next chunk is load into the CPU memory
# Reading chunk-specific cfg file (first argument-mandatory file)
if not (os.path.exists(cfg_file)):
sys.stderr.write(
'ERROR: The config file %s does not exist!\n' % (cfg_file))
sys.exit(0)
else:
config = configparser.ConfigParser()
config.read(cfg_file)
# Setting torch seed
seed = int(config['exp']['seed'])
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
# Reading config parameters
output_folder = config['exp']['out_folder']
use_cuda = strtobool(config['exp']['use_cuda'])
multi_gpu = strtobool(config['exp']['multi_gpu'])
to_do = config['exp']['to_do']
info_file = config['exp']['out_info']
model = config['model']['model'].split('\n')
forward_outs = config['forward']['forward_out'].split(',')
forward_normalize_post = list(
map(strtobool, config['forward']['normalize_posteriors'].split(',')))
forward_count_files = config['forward']['normalize_with_counts_from'].split(
',')
require_decodings = list(
map(strtobool, config['forward']['require_decoding'].split(',')))
use_cuda = strtobool(config['exp']['use_cuda'])
save_gpumem = strtobool(config['exp']['save_gpumem'])
is_production = strtobool(config['exp']['production'])
if to_do == 'train':
batch_size = int(config['batches']['batch_size_train'])
if to_do == 'valid':
batch_size = int(config['batches']['batch_size_valid'])
if to_do == 'forward':
batch_size = 1
# ***** Reading the Data********
if processed_first:
# Reading all the features and labels for this chunk
shared_list = []
p = threading.Thread(target=read_lab_fea, args=(
cfg_file, is_production, shared_list, output_folder,))
p.start()
p.join()
data_name = shared_list[0]
data_end_index = shared_list[1]
fea_dict = shared_list[2]
lab_dict = shared_list[3]
arch_dict = shared_list[4]
data_set = shared_list[5]
# converting numpy tensors into pytorch tensors and put them on GPUs if specified
if not (save_gpumem) and use_cuda:
data_set = torch.from_numpy(data_set).float().cuda()
else:
data_set = torch.from_numpy(data_set).float()
# Reading all the features and labels for the next chunk
shared_list = []
p = threading.Thread(target=read_lab_fea, args=(
next_config_file, is_production, shared_list, output_folder,))
p.start()
# Reading model and initialize networks
inp_out_dict = fea_dict
[nns, costs] = model_init(
inp_out_dict, model, config, arch_dict, use_cuda, multi_gpu, to_do)
# optimizers initialization
optimizers = optimizer_init(nns, config, arch_dict)
# pre-training
for net in nns.keys():
pt_file_arch = config[arch_dict[net][0]]['arch_pretrain_file']
if pt_file_arch != 'none':
checkpoint_load = torch.load(pt_file_arch)
nns[net].load_state_dict(checkpoint_load['model_par'])
optimizers[net].load_state_dict(checkpoint_load['optimizer_par'])
optimizers[net].param_groups[0]['lr'] = float(
config[arch_dict[net][0]]['arch_lr']) # loading lr of the cfg file for pt
#pruning if needed
if nns[net].prune and if_prune:
print('Pruning parameters of ' + net)
prune_ret = nns[net].prune_parameters()
if prune_ret == 1:
print('Testing: Pruning complete of ' + net)
#init patterns if needed
if net in patterns:
nns[net].pattern = patterns[net]
nns[net].pattern_mask = pattern_masks[net]
if to_do == 'forward':
post_file = {}
for out_id in range(len(forward_outs)):
if require_decodings[out_id]:
out_file = info_file.replace(
'.info', '_' + forward_outs[out_id] + '_to_decode.ark')
else:
out_file = info_file.replace(
'.info', '_' + forward_outs[out_id] + '.ark')
post_file[forward_outs[out_id]] = open_or_fd(
out_file, output_folder, 'wb')
# Pattern search, model modification and mask saving
# pattern_prun_model(model, pattern_mode, pattern_shape, pattern_nnz, mask_save_dir, mask_name)
if if_pattern_search:
from pattern_search import pattern_prun_model
nns = pattern_prun_model(nns)
# check automatically if the model is sequential
seq_model = is_sequential_dict(config, arch_dict)
# ***** Minibatch Processing loop********
if seq_model or to_do == 'forward':
N_snt = len(data_name)
N_batches = int(N_snt / batch_size)
else:
N_ex_tr = data_set.shape[0]
N_batches = int(N_ex_tr / batch_size)
beg_batch = 0
end_batch = batch_size
snt_index = 0
beg_snt = 0
start_time = time.time()
# array of sentence lengths
arr_snt_len = shift(shift(data_end_index, -1, 0) - data_end_index, 1, 0)
arr_snt_len[0] = data_end_index[0]
loss_sum = 0
err_sum = 0
inp_dim = data_set.shape[1]
for i in range(N_batches):
max_len = 0
if seq_model:
max_len = int(max(arr_snt_len[snt_index:snt_index + batch_size]))
inp = torch.zeros(max_len, batch_size, inp_dim).contiguous()
for k in range(batch_size):
snt_len = data_end_index[snt_index] - beg_snt
N_zeros = max_len - snt_len
# Appending a random number of initial zeros, tge others are at the end.
N_zeros_left = random.randint(0, N_zeros)
# randomizing could have a regularization effect
inp[N_zeros_left:N_zeros_left + snt_len, k,
:] = data_set[beg_snt:beg_snt + snt_len, :]
beg_snt = data_end_index[snt_index]
snt_index = snt_index + 1
else:
# features and labels for batch i
if to_do != 'forward':
inp = data_set[beg_batch:end_batch, :].contiguous()
else:
snt_len = data_end_index[snt_index] - beg_snt
inp = data_set[beg_snt:beg_snt + snt_len, :].contiguous()
beg_snt = data_end_index[snt_index]
snt_index = snt_index + 1
# use cuda
if use_cuda:
inp = inp.cuda()
if to_do == 'train':
# Forward input, with autograd graph active
outs_dict = forward_model(fea_dict, lab_dict, arch_dict, model, nns, costs, inp, inp_out_dict, max_len,
batch_size, to_do, forward_outs)
for opt in optimizers.keys():
optimizers[opt].zero_grad()
outs_dict['loss_final'].backward()
# Gradient Clipping (th 0.1)
# for net in nns.keys():
# torch.nn.utils.clip_grad_norm_(nns[net].parameters(), 0.1)
for opt in optimizers.keys():
if not (strtobool(config[arch_dict[opt][0]]['arch_freeze'])):
optimizers[opt].step()
else:
with torch.no_grad(): # Forward input without autograd graph (save memory)
outs_dict = forward_model(fea_dict, lab_dict, arch_dict, model, nns, costs, inp, inp_out_dict, max_len,
batch_size, to_do, forward_outs)
if to_do == 'forward':
for out_id in range(len(forward_outs)):
out_save = outs_dict[forward_outs[out_id]].data.cpu().numpy()
if forward_normalize_post[out_id]:
# read the config file
counts = load_counts(forward_count_files[out_id])
out_save = out_save - np.log(counts / np.sum(counts))
# save the output
write_mat(
output_folder, post_file[forward_outs[out_id]], out_save, data_name[i])
else:
loss_sum = loss_sum + outs_dict['loss_final'].detach()
err_sum = err_sum + outs_dict['err_final'].detach()
# update it to the next batch
beg_batch = end_batch
end_batch = beg_batch + batch_size
# Progress bar
if to_do == 'train':
status_string = "Training | (Batch " + str(i + 1) + "/" + str(N_batches) + ")" + " | L:" + str(
round(loss_sum.cpu().item() / (i + 1), 3))
if i == N_batches - 1:
status_string = "Training | (Batch " + \
str(i + 1) + "/" + str(N_batches) + ")"
if to_do == 'valid':
status_string = "Validating | (Batch " + \
str(i + 1) + "/" + str(N_batches) + ")"
if to_do == 'forward':
status_string = "Forwarding | (Batch " + \
str(i + 1) + "/" + str(N_batches) + ")"
progress(i, N_batches, status=status_string)
elapsed_time_chunk = time.time() - start_time
loss_tot = loss_sum / N_batches
err_tot = err_sum / N_batches
# clearing memory
del inp, outs_dict, data_set
# save the model
if to_do == 'train':
patterns = dict()
pattern_masks = dict()
for net in nns.keys():
checkpoint = {}
# pruning if epoch complete
if nns[net].prune and if_prune:
print('Pruning parameters of ' + net)
prune_ret = nns[net].prune_parameters()
if prune_ret == 1:
print('Pruning complete of ' + net)
# creating guided HCGS masks
if nns[net].guided_hcgs and not nns[net].apply_guided_hcgs:
ghcgs_ret = nns[net].apply_ghcgs()
# if ghcgs_ret == 1:
# print('')
if nns[net].if_pattern:
patterns[net] = nns[net].pattern
pattern_masks[net] = nns[net].pattern_mask
pass
# print('Update pattern and prun of ' + net)
# pattern_ret = nns[net].update_patterns()
# mask_ret = nns[net].update_mask()
# weight_ret = nns[net].update_weight()
# if pattern_ret and mask_ret and weight_ret:
# print('Update pattern complete of ' + net)
# else:
# print(f'Update pattern net failed pattern_ret:[pattern_ret], mask_ret[mask_ret], weight_ret[weight_ret]')
checkpoint['model_par'] = nns[net].state_dict()
checkpoint['optimizer_par'] = optimizers[net].state_dict()
out_file = info_file.replace(
'.info', '_' + arch_dict[net][0] + '.pkl')
torch.save(checkpoint, out_file)
# if to_do == 'valid':
# for net in nns.keys():
# checkpoint = {}
# checkpoint['model_par'] = nns[net].state_dict()
# checkpoint['optimizer_par'] = optimizers[net].state_dict()
#
# out_file = info_file.replace('.info', '_' + arch_dict[net][0] + '.pkl')
# torch.save(checkpoint, out_file)
if to_do == 'forward':
for out_name in forward_outs:
post_file[out_name].close()
# Write info file
with open(info_file, "w") as text_file:
text_file.write("[results]\n")
if to_do != 'forward':
text_file.write("loss=%s\n" % loss_tot.cpu().numpy())
text_file.write("err=%s\n" % err_tot.cpu().numpy())
text_file.write("elapsed_time_chunk=%f\n" % elapsed_time_chunk)
text_file.close()
# Getting the data for the next chunk (read in parallel)
p.join()
data_name = shared_list[0]
data_end_index = shared_list[1]
fea_dict = shared_list[2]
lab_dict = shared_list[3]
arch_dict = shared_list[4]
data_set = shared_list[5]
# converting numpy tensors into pytorch tensors and put them on GPUs if specified
if not (save_gpumem) and use_cuda:
data_set = torch.from_numpy(data_set).float().cuda()
else:
data_set = torch.from_numpy(data_set).float()
return [data_name, data_set, data_end_index, fea_dict, lab_dict, arch_dict], patterns, pattern_masks