forked from ZihaoZhao/speech-to-text-wavenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
106 lines (96 loc) · 3.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
'''
Author: your name
Date: 2020-09-22 15:44:28
LastEditTime: 2020-09-22 17:02:25
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: /speech-to-text-wavenet/test.py
'''
import glob
import json
import os
import time
import glog
import tensorflow as tf
import dataset
import utils
import wavenet
flags = tf.app.flags
flags.DEFINE_string('config_path', 'config/english-28.json', 'Directory to config.')
flags.DEFINE_string('dataset_path', 'data/v28/test.record', 'Path to wave file.')
flags.DEFINE_integer('device', 1, 'The device used to test.')
flags.DEFINE_string('ckpt_dir', 'model/v28', 'Path to directory holding a checkpoint.')
FLAGS = flags.FLAGS
def main(_):
utils.load(FLAGS.config_path)
os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.device)
# with tf.device(FLAGS.device):
test_dataset = dataset.create(FLAGS.dataset_path, repeat=False, batch_size=1)
waves = tf.reshape(tf.sparse.to_dense(test_dataset[0]), shape=[1, -1, utils.Data.num_channel])
labels = tf.sparse.to_dense(test_dataset[1])
sequence_length = tf.cast(test_dataset[2], tf.int32)
vocabulary = tf.constant(utils.Data.vocabulary)
labels = tf.gather(vocabulary, labels)
logits = wavenet.bulid_wavenet(waves, len(utils.Data.vocabulary))
decodes, _ = tf.nn.ctc_beam_search_decoder(
tf.transpose(logits, perm=[1, 0, 2]), sequence_length, merge_repeated=False)
outputs = tf.gather(vocabulary, tf.sparse.to_dense(decodes[0]))
save = tf.train.Saver()
evalutes = {}
if os.path.exists(FLAGS.ckpt_dir + '/evalute.json'):
evalutes = json.load(open(FLAGS.ckpt_dir + '/evalute.json', encoding='utf-8'))
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
status = 0
while True:
filepaths = glob.glob(FLAGS.ckpt_dir + '/*.index')
filepaths.sort()
filepaths.reverse()
filepath = filepaths[0]
max_uid = 0
for filepath in filepaths:
model_path = os.path.splitext(filepath)[0]
uid = os.path.split(model_path)[-1]
if max_uid <= int(uid.split("-")[1]):
max_uid = int(uid.split("-")[1])
max_uid_full = uid
max_model_path = model_path
# print(max_uid)
status = 2
sess.run(tf.global_variables_initializer())
sess.run(test_dataset[-1])
save.restore(sess, max_model_path)
# sa print(tf.train.latest_checkpoint(FLAGS.ckpt_dir))
# ve.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpt_dir))
evalutes[max_uid_full] = {}
tps, preds, poses, count = 0, 0, 0, 0
while True:
try:
count += 1
y, y_ = sess.run((labels, outputs))
y = utils.cvt_np2string(y)
y_ = utils.cvt_np2string(y_)
tp, pred, pos = utils.evalutes(y_, y)
tps += tp
preds += pred
poses += pos
# if count % 1000 == 0:
# glog.info('processed %d: tp=%d, pred=%d, pos=%d.' % (count, tps, preds, poses))
except:
# if count % 1000 != 0:
# glog.info('processed %d: tp=%d, pred=%d, pos=%d.' % (count, tps, preds, poses))
break
evalutes[max_uid_full]['tp'] = tps
evalutes[max_uid_full]['pred'] = preds
evalutes[max_uid_full]['pos'] = poses
evalutes[max_uid_full]['f1'] = 2 * tps / (preds + poses + 1e-20)
json.dump(evalutes, open(FLAGS.ckpt_dir + '/evalute.json', mode='w', encoding='utf-8'))
evalute = evalutes[max_uid_full]
glog.info('Evalute %s: tp=%d, pred=%d, pos=%d, f1=%f.' %
(max_uid_full, evalute['tp'], evalute['pred'], evalute['pos'], evalute['f1']))
if status == 1:
time.sleep(60)
status = 1
if __name__ == '__main__':
tf.app.run()