forked from jrh13/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib.ml
843 lines (684 loc) · 28.7 KB
/
lib.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
(* ========================================================================= *)
(* Convenient library functions. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
let fail() = failwith "";;
(* ------------------------------------------------------------------------- *)
(* Combinators. *)
(* ------------------------------------------------------------------------- *)
let curry f x y = f(x,y);;
let uncurry f(x,y) = f x y;;
let I x = x;;
let K x y = x;;
let C f x y = f y x;;
let W f x = f x x;;
let (o) = fun f g x -> f(g x);;
let (F_F) = fun f g (x,y) -> (f x,g y);;
(* ------------------------------------------------------------------------- *)
(* List basics. *)
(* ------------------------------------------------------------------------- *)
let hd l =
match l with
h::t -> h
| _ -> failwith "hd";;
let tl l =
match l with
h::t -> t
| _ -> failwith "tl";;
let map f =
let rec mapf l =
match l with
[] -> []
| (x::t) -> let y = f x in y::(mapf t) in
mapf;;
let rec last l =
match l with
[x] -> x
| (h::t) -> last t
| [] -> failwith "last";;
let rec butlast l =
match l with
[_] -> []
| (h::t) -> h::(butlast t)
| [] -> failwith "butlast";;
let rec el n l =
if n = 0 then hd l else el (n - 1) (tl l);;
let rev =
let rec rev_append acc l =
match l with
[] -> acc
| h::t -> rev_append (h::acc) t in
fun l -> rev_append [] l;;
let rec map2 f l1 l2 =
match (l1,l2) with
[],[] -> []
| (h1::t1),(h2::t2) -> let h = f h1 h2 in h::(map2 f t1 t2)
| _ -> failwith "map2: length mismatch";;
(* ------------------------------------------------------------------------- *)
(* Attempting function or predicate applications. *)
(* ------------------------------------------------------------------------- *)
let can f x = try (f x; true) with Failure _ -> false;;
let check p x = if p x then x else failwith "check";;
(* ------------------------------------------------------------------------- *)
(* Repetition of a function. *)
(* ------------------------------------------------------------------------- *)
let rec funpow n f x =
if n < 1 then x else funpow (n-1) f (f x);;
let rec repeat f x =
try let y = f x in repeat f y with Failure _ -> x;;
(* ------------------------------------------------------------------------- *)
(* To avoid consing in various situations, we propagate this exception. *)
(* I should probably eliminate this and use pointer EQ tests instead. *)
(* ------------------------------------------------------------------------- *)
exception Unchanged;;
(* ------------------------------------------------------------------------- *)
(* Various versions of list iteration. *)
(* ------------------------------------------------------------------------- *)
let rec itlist f l b =
match l with
[] -> b
| (h::t) -> f h (itlist f t b);;
let rec rev_itlist f l b =
match l with
[] -> b
| (h::t) -> rev_itlist f t (f h b);;
let rec end_itlist f l =
match l with
[] -> failwith "end_itlist"
| [x] -> x
| (h::t) -> f h (end_itlist f t);;
let rec itlist2 f l1 l2 b =
match (l1,l2) with
([],[]) -> b
| (h1::t1,h2::t2) -> f h1 h2 (itlist2 f t1 t2 b)
| _ -> failwith "itlist2";;
let rec rev_itlist2 f l1 l2 b =
match (l1,l2) with
([],[]) -> b
| (h1::t1,h2::t2) -> rev_itlist2 f t1 t2 (f h1 h2 b)
| _ -> failwith "rev_itlist2";;
(* ------------------------------------------------------------------------- *)
(* Iterative splitting (list) and stripping (tree) via destructor. *)
(* ------------------------------------------------------------------------- *)
let rec splitlist dest x =
try let l,r = dest x in
let ls,res = splitlist dest r in
(l::ls,res)
with Failure _ -> ([],x);;
let rev_splitlist dest =
let rec rsplist ls x =
try let l,r = dest x in
rsplist (r::ls) l
with Failure _ -> (x,ls) in
fun x -> rsplist [] x;;
let striplist dest =
let rec strip x acc =
try let l,r = dest x in
strip l (strip r acc)
with Failure _ -> x::acc in
fun x -> strip x [];;
(* ------------------------------------------------------------------------- *)
(* Apply a destructor as many times as elements in list. *)
(* ------------------------------------------------------------------------- *)
let rec nsplit dest clist x =
if clist = [] then [],x else
let l,r = dest x in
let ll,y = nsplit dest (tl clist) r in
l::ll,y;;
(* ------------------------------------------------------------------------- *)
(* Replication and sequences. *)
(* ------------------------------------------------------------------------- *)
let rec replicate x n =
if n < 1 then []
else x::(replicate x (n - 1));;
let rec (--) = fun m n -> if m > n then [] else m::((m + 1) -- n);;
(* ------------------------------------------------------------------------- *)
(* Various useful list operations. *)
(* ------------------------------------------------------------------------- *)
let rec forall p l =
match l with
[] -> true
| h::t -> p(h) && forall p t;;
let rec forall2 p l1 l2 =
match (l1,l2) with
[],[] -> true
| (h1::t1,h2::t2) -> p h1 h2 && forall2 p t1 t2
| _ -> false;;
let rec exists p l =
match l with
[] -> false
| h::t -> p(h) || exists p t;;
let length =
let rec len k l =
if l = [] then k else len (k + 1) (tl l) in
fun l -> len 0 l;;
let rec filter p l =
match l with
[] -> l
| h::t -> let t' = filter p t in
if p(h) then if t'==t then l else h::t'
else t';;
let rec partition p l =
match l with
[] -> [],l
| h::t -> let yes,no = partition p t in
if p(h) then (if yes == t then l,[] else h::yes,no)
else (if no == t then [],l else yes,h::no);;
let rec mapfilter f l =
match l with
[] -> []
| (h::t) -> let rest = mapfilter f t in
try (f h)::rest with Failure _ -> rest;;
let rec find p l =
match l with
[] -> failwith "find"
| (h::t) -> if p(h) then h else find p t;;
let rec tryfind f l =
match l with
[] -> failwith "tryfind"
| (h::t) -> try f h with Failure _ -> tryfind f t;;
let flat l = itlist (@) l [];;
let rec remove p l =
match l with
[] -> failwith "remove"
| (h::t) -> if p(h) then h,t else
let y,n = remove p t in y,h::n;;
let rec chop_list n l =
if n = 0 then [],l else
try let m,l' = chop_list (n-1) (tl l) in (hd l)::m,l'
with Failure _ -> failwith "chop_list";;
let index x =
let rec ind n l =
match l with
[] -> failwith "index"
| (h::t) -> if Pervasives.compare x h = 0 then n else ind (n + 1) t in
ind 0;;
(* ------------------------------------------------------------------------- *)
(* "Set" operations on lists. *)
(* ------------------------------------------------------------------------- *)
let rec mem x lis =
match lis with
[] -> false
| (h::t) -> Pervasives.compare x h = 0 || mem x t;;
let insert x l =
if mem x l then l else x::l;;
let union l1 l2 = itlist insert l1 l2;;
let unions l = itlist union l [];;
let intersect l1 l2 = filter (fun x -> mem x l2) l1;;
let subtract l1 l2 = filter (fun x -> not (mem x l2)) l1;;
let subset l1 l2 = forall (fun t -> mem t l2) l1;;
let set_eq l1 l2 = subset l1 l2 && subset l2 l1;;
(* ------------------------------------------------------------------------- *)
(* Association lists. *)
(* ------------------------------------------------------------------------- *)
let rec assoc a l =
match l with
(x,y)::t -> if Pervasives.compare x a = 0 then y else assoc a t
| [] -> failwith "find";;
let rec rev_assoc a l =
match l with
(x,y)::t -> if Pervasives.compare y a = 0 then x else rev_assoc a t
| [] -> failwith "find";;
(* ------------------------------------------------------------------------- *)
(* Zipping, unzipping etc. *)
(* ------------------------------------------------------------------------- *)
let rec zip l1 l2 =
match (l1,l2) with
([],[]) -> []
| (h1::t1,h2::t2) -> (h1,h2)::(zip t1 t2)
| _ -> failwith "zip";;
let rec unzip =
function [] -> [],[]
| ((a,b)::rest) -> let alist,blist = unzip rest in
(a::alist,b::blist);;
(* ------------------------------------------------------------------------- *)
(* Sharing out a list according to pattern in list-of-lists. *)
(* ------------------------------------------------------------------------- *)
let rec shareout pat all =
if pat = [] then [] else
let l,r = chop_list (length (hd pat)) all in
l::(shareout (tl pat) r);;
(* ------------------------------------------------------------------------- *)
(* Iterating functions over lists. *)
(* ------------------------------------------------------------------------- *)
let rec do_list f l =
match l with
[] -> ()
| (h::t) -> (f h; do_list f t);;
(* ------------------------------------------------------------------------- *)
(* Sorting. *)
(* ------------------------------------------------------------------------- *)
let rec sort cmp lis =
match lis with
[] -> []
| piv::rest ->
let r,l = partition (cmp piv) rest in
(sort cmp l) @ (piv::(sort cmp r));;
(* ------------------------------------------------------------------------- *)
(* Removing adjacent (NB!) equal elements from list. *)
(* ------------------------------------------------------------------------- *)
let rec uniq l =
match l with
x::(y::_ as t) -> let t' = uniq t in
if Pervasives.compare x y = 0 then t' else
if t'==t then l else x::t'
| _ -> l;;
(* ------------------------------------------------------------------------- *)
(* Convert list into set by eliminating duplicates. *)
(* ------------------------------------------------------------------------- *)
let setify s = uniq (sort (fun x y -> Pervasives.compare x y <= 0) s);;
(* ------------------------------------------------------------------------- *)
(* String operations (surely there is a better way...) *)
(* ------------------------------------------------------------------------- *)
let implode l = itlist (^) l "";;
let explode s =
let rec exap n l =
if n < 0 then l else
exap (n - 1) ((String.sub s n 1)::l) in
exap (String.length s - 1) [];;
(* ------------------------------------------------------------------------- *)
(* Greatest common divisor. *)
(* ------------------------------------------------------------------------- *)
let gcd =
let rec gxd x y =
if y = 0 then x else gxd y (x mod y) in
fun x y -> let x' = abs x and y' = abs y in
if x' < y' then gxd y' x' else gxd x' y';;
(* ------------------------------------------------------------------------- *)
(* Some useful functions on "num" type. *)
(* ------------------------------------------------------------------------- *)
let num_0 = Int 0
and num_1 = Int 1
and num_2 = Int 2
and num_10 = Int 10;;
let pow2 n = power_num num_2 (Int n);;
let pow10 n = power_num num_10 (Int n);;
let numdom r =
let r' = Ratio.normalize_ratio (ratio_of_num r) in
num_of_big_int(Ratio.numerator_ratio r'),
num_of_big_int(Ratio.denominator_ratio r');;
let numerator = fst o numdom
and denominator = snd o numdom;;
let gcd_num n1 n2 =
num_of_big_int(Big_int.gcd_big_int (big_int_of_num n1) (big_int_of_num n2));;
let lcm_num x y =
if x =/ num_0 && y =/ num_0 then num_0
else abs_num((x */ y) // gcd_num x y);;
(* ------------------------------------------------------------------------- *)
(* All pairs arising from applying a function over two lists. *)
(* ------------------------------------------------------------------------- *)
let rec allpairs f l1 l2 =
match l1 with
h1::t1 -> itlist (fun x a -> f h1 x :: a) l2 (allpairs f t1 l2)
| [] -> [];;
(* ------------------------------------------------------------------------- *)
(* Issue a report with a newline. *)
(* ------------------------------------------------------------------------- *)
let report s =
Format.print_string s; Format.print_newline();;
(* ------------------------------------------------------------------------- *)
(* Convenient function for issuing a warning. *)
(* ------------------------------------------------------------------------- *)
let warn cond s =
if cond then report ("Warning: "^s) else ();;
(* ------------------------------------------------------------------------- *)
(* Flags to switch on verbose mode. *)
(* ------------------------------------------------------------------------- *)
let verbose = ref true;;
let report_timing = ref true;;
(* ------------------------------------------------------------------------- *)
(* Switchable version of "report". *)
(* ------------------------------------------------------------------------- *)
let remark s =
if !verbose then report s else ();;
(* ------------------------------------------------------------------------- *)
(* Time a function. *)
(* ------------------------------------------------------------------------- *)
let time f x =
if not (!report_timing) then f x else
let start_time = Sys.time() in
try let result = f x in
let finish_time = Sys.time() in
report("CPU time (user): "^(string_of_float(finish_time -. start_time)));
result
with e ->
let finish_time = Sys.time() in
Format.print_string("Failed after (user) CPU time of "^
(string_of_float(finish_time -. start_time))^": ");
raise e;;
(* ------------------------------------------------------------------------- *)
(* Versions of assoc and rev_assoc with default rather than failure. *)
(* ------------------------------------------------------------------------- *)
let rec assocd a l d =
match l with
[] -> d
| (x,y)::t -> if Pervasives.compare x a = 0 then y else assocd a t d;;
let rec rev_assocd a l d =
match l with
[] -> d
| (x,y)::t -> if Pervasives.compare y a = 0 then x else rev_assocd a t d;;
(* ------------------------------------------------------------------------- *)
(* Version of map that avoids rebuilding unchanged subterms. *)
(* ------------------------------------------------------------------------- *)
let rec qmap f l =
match l with
h::t -> let h' = f h and t' = qmap f t in
if h' == h && t' == t then l else h'::t'
| _ -> l;;
(* ------------------------------------------------------------------------- *)
(* Merging and bottom-up mergesort. *)
(* ------------------------------------------------------------------------- *)
let rec merge ord l1 l2 =
match l1 with
[] -> l2
| h1::t1 -> match l2 with
[] -> l1
| h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2)
else h2::(merge ord l1 t2);;
let mergesort ord =
let rec mergepairs l1 l2 =
match (l1,l2) with
([s],[]) -> s
| (l,[]) -> mergepairs [] l
| (l,[s1]) -> mergepairs (s1::l) []
| (l,(s1::s2::ss)) -> mergepairs ((merge ord s1 s2)::l) ss in
fun l -> if l = [] then [] else mergepairs [] (map (fun x -> [x]) l);;
(* ------------------------------------------------------------------------- *)
(* Common measure predicates to use with "sort". *)
(* ------------------------------------------------------------------------- *)
let increasing f x y = Pervasives.compare (f x) (f y) < 0;;
let decreasing f x y = Pervasives.compare (f x) (f y) > 0;;
(* ------------------------------------------------------------------------- *)
(* Polymorphic finite partial functions via Patricia trees. *)
(* *)
(* The point of this strange representation is that it is canonical (equal *)
(* functions have the same encoding) yet reasonably efficient on average. *)
(* *)
(* Idea due to Diego Olivier Fernandez Pons (OCaml list, 2003/11/10). *)
(* ------------------------------------------------------------------------- *)
type ('a,'b)func =
Empty
| Leaf of int * ('a*'b)list
| Branch of int * int * ('a,'b)func * ('a,'b)func;;
(* ------------------------------------------------------------------------- *)
(* Undefined function. *)
(* ------------------------------------------------------------------------- *)
let undefined = Empty;;
(* ------------------------------------------------------------------------- *)
(* In case of equality comparison worries, better use this. *)
(* ------------------------------------------------------------------------- *)
let is_undefined f =
match f with
Empty -> true
| _ -> false;;
(* ------------------------------------------------------------------------- *)
(* Operation analagous to "map" for lists. *)
(* ------------------------------------------------------------------------- *)
let mapf =
let rec map_list f l =
match l with
[] -> []
| (x,y)::t -> (x,f(y))::(map_list f t) in
let rec mapf f t =
match t with
Empty -> Empty
| Leaf(h,l) -> Leaf(h,map_list f l)
| Branch(p,b,l,r) -> Branch(p,b,mapf f l,mapf f r) in
mapf;;
(* ------------------------------------------------------------------------- *)
(* Operations analogous to "fold" for lists. *)
(* ------------------------------------------------------------------------- *)
let foldl =
let rec foldl_list f a l =
match l with
[] -> a
| (x,y)::t -> foldl_list f (f a x y) t in
let rec foldl f a t =
match t with
Empty -> a
| Leaf(h,l) -> foldl_list f a l
| Branch(p,b,l,r) -> foldl f (foldl f a l) r in
foldl;;
let foldr =
let rec foldr_list f l a =
match l with
[] -> a
| (x,y)::t -> f x y (foldr_list f t a) in
let rec foldr f t a =
match t with
Empty -> a
| Leaf(h,l) -> foldr_list f l a
| Branch(p,b,l,r) -> foldr f l (foldr f r a) in
foldr;;
(* ------------------------------------------------------------------------- *)
(* Mapping to sorted-list representation of the graph, domain and range. *)
(* ------------------------------------------------------------------------- *)
let graph f = setify (foldl (fun a x y -> (x,y)::a) [] f);;
let dom f = setify(foldl (fun a x y -> x::a) [] f);;
let ran f = setify(foldl (fun a x y -> y::a) [] f);;
(* ------------------------------------------------------------------------- *)
(* Application. *)
(* ------------------------------------------------------------------------- *)
let applyd =
let rec apply_listd l d x =
match l with
(a,b)::t -> let c = Pervasives.compare x a in
if c = 0 then b else if c > 0 then apply_listd t d x else d x
| [] -> d x in
fun f d x ->
let k = Hashtbl.hash x in
let rec look t =
match t with
Leaf(h,l) when h = k -> apply_listd l d x
| Branch(p,b,l,r) when (k lxor p) land (b - 1) = 0
-> look (if k land b = 0 then l else r)
| _ -> d x in
look f;;
let apply f = applyd f (fun x -> failwith "apply");;
let tryapplyd f a d = applyd f (fun x -> d) a;;
let defined f x = try apply f x; true with Failure _ -> false;;
(* ------------------------------------------------------------------------- *)
(* Undefinition. *)
(* ------------------------------------------------------------------------- *)
let undefine =
let rec undefine_list x l =
match l with
(a,b as ab)::t ->
let c = Pervasives.compare x a in
if c = 0 then t
else if c < 0 then l else
let t' = undefine_list x t in
if t' == t then l else ab::t'
| [] -> [] in
fun x ->
let k = Hashtbl.hash x in
let rec und t =
match t with
Leaf(h,l) when h = k ->
let l' = undefine_list x l in
if l' == l then t
else if l' = [] then Empty
else Leaf(h,l')
| Branch(p,b,l,r) when k land (b - 1) = p ->
if k land b = 0 then
let l' = und l in
if l' == l then t
else (match l' with Empty -> r | _ -> Branch(p,b,l',r))
else
let r' = und r in
if r' == r then t
else (match r' with Empty -> l | _ -> Branch(p,b,l,r'))
| _ -> t in
und;;
(* ------------------------------------------------------------------------- *)
(* Redefinition and combination. *)
(* ------------------------------------------------------------------------- *)
let (|->),combine =
let newbranch p1 t1 p2 t2 =
let zp = p1 lxor p2 in
let b = zp land (-zp) in
let p = p1 land (b - 1) in
if p1 land b = 0 then Branch(p,b,t1,t2)
else Branch(p,b,t2,t1) in
let rec define_list (x,y as xy) l =
match l with
(a,b as ab)::t ->
let c = Pervasives.compare x a in
if c = 0 then xy::t
else if c < 0 then xy::l
else ab::(define_list xy t)
| [] -> [xy]
and combine_list op z l1 l2 =
match (l1,l2) with
[],_ -> l2
| _,[] -> l1
| ((x1,y1 as xy1)::t1,(x2,y2 as xy2)::t2) ->
let c = Pervasives.compare x1 x2 in
if c < 0 then xy1::(combine_list op z t1 l2)
else if c > 0 then xy2::(combine_list op z l1 t2) else
let y = op y1 y2 and l = combine_list op z t1 t2 in
if z(y) then l else (x1,y)::l in
let (|->) x y =
let k = Hashtbl.hash x in
let rec upd t =
match t with
Empty -> Leaf (k,[x,y])
| Leaf(h,l) ->
if h = k then Leaf(h,define_list (x,y) l)
else newbranch h t k (Leaf(k,[x,y]))
| Branch(p,b,l,r) ->
if k land (b - 1) <> p then newbranch p t k (Leaf(k,[x,y]))
else if k land b = 0 then Branch(p,b,upd l,r)
else Branch(p,b,l,upd r) in
upd in
let rec combine op z t1 t2 =
match (t1,t2) with
Empty,_ -> t2
| _,Empty -> t1
| Leaf(h1,l1),Leaf(h2,l2) ->
if h1 = h2 then
let l = combine_list op z l1 l2 in
if l = [] then Empty else Leaf(h1,l)
else newbranch h1 t1 h2 t2
| (Leaf(k,lis) as lf),(Branch(p,b,l,r) as br) ->
if k land (b - 1) = p then
if k land b = 0 then
(match combine op z lf l with
Empty -> r | l' -> Branch(p,b,l',r))
else
(match combine op z lf r with
Empty -> l | r' -> Branch(p,b,l,r'))
else
newbranch k lf p br
| (Branch(p,b,l,r) as br),(Leaf(k,lis) as lf) ->
if k land (b - 1) = p then
if k land b = 0 then
(match combine op z l lf with
Empty -> r | l' -> Branch(p,b,l',r))
else
(match combine op z r lf with
Empty -> l | r' -> Branch(p,b,l,r'))
else
newbranch p br k lf
| Branch(p1,b1,l1,r1),Branch(p2,b2,l2,r2) ->
if b1 < b2 then
if p2 land (b1 - 1) <> p1 then newbranch p1 t1 p2 t2
else if p2 land b1 = 0 then
(match combine op z l1 t2 with
Empty -> r1 | l -> Branch(p1,b1,l,r1))
else
(match combine op z r1 t2 with
Empty -> l1 | r -> Branch(p1,b1,l1,r))
else if b2 < b1 then
if p1 land (b2 - 1) <> p2 then newbranch p1 t1 p2 t2
else if p1 land b2 = 0 then
(match combine op z t1 l2 with
Empty -> r2 | l -> Branch(p2,b2,l,r2))
else
(match combine op z t1 r2 with
Empty -> l2 | r -> Branch(p2,b2,l2,r))
else if p1 = p2 then
(match (combine op z l1 l2,combine op z r1 r2) with
(Empty,r) -> r | (l,Empty) -> l | (l,r) -> Branch(p1,b1,l,r))
else
newbranch p1 t1 p2 t2 in
(|->),combine;;
(* ------------------------------------------------------------------------- *)
(* Special case of point function. *)
(* ------------------------------------------------------------------------- *)
let (|=>) = fun x y -> (x |-> y) undefined;;
(* ------------------------------------------------------------------------- *)
(* Grab an arbitrary element. *)
(* ------------------------------------------------------------------------- *)
let rec choose t =
match t with
Empty -> failwith "choose: completely undefined function"
| Leaf(h,l) -> hd l
| Branch(b,p,t1,t2) -> choose t1;;
(* ------------------------------------------------------------------------- *)
(* Install a trivial printer for the general polymorphic case. *)
(* ------------------------------------------------------------------------- *)
let print_fpf (f:('a,'b)func) = Format.print_string "<func>";;
#install_printer print_fpf;;
(* ------------------------------------------------------------------------- *)
(* Set operations parametrized by equality (from Steven Obua). *)
(* ------------------------------------------------------------------------- *)
let rec mem' eq =
let rec mem x lis =
match lis with
[] -> false
| (h::t) -> eq x h || mem x t
in mem;;
let insert' eq x l =
if mem' eq x l then l else x::l;;
let union' eq l1 l2 = itlist (insert' eq) l1 l2;;
let unions' eq l = itlist (union' eq) l [];;
let subtract' eq l1 l2 = filter (fun x -> not (mem' eq x l2)) l1;;
(* ------------------------------------------------------------------------- *)
(* Accepts decimal, hex or binary numeral, using C notation 0x... for hex *)
(* and analogous 0b... for binary. *)
(* ------------------------------------------------------------------------- *)
let num_of_string =
let values =
["0",0; "1",1; "2",2; "3",3; "4",4;
"5",5; "6",6; "7",7; "8",8; "9",9;
"a",10; "A",10; "b",11; "B",11;
"c",12; "C",12; "d",13; "D",13;
"e",14; "E",14; "f",15; "F",15] in
let valof b s =
let v = Int(assoc s values) in
if v </ b then v else failwith "num_of_string: invalid digit for base"
and two = num_2 and ten = num_10 and sixteen = Int 16 in
let rec num_of_stringlist b l =
match l with
[] -> failwith "num_of_string: no digits after base indicator"
| [h] -> valof b h
| h::t -> valof b h +/ b */ num_of_stringlist b t in
fun s ->
match explode(s) with
[] -> failwith "num_of_string: no digits"
| "0"::"x"::hexdigits -> num_of_stringlist sixteen (rev hexdigits)
| "0"::"b"::bindigits -> num_of_stringlist two (rev bindigits)
| decdigits -> num_of_stringlist ten (rev decdigits);;
(* ------------------------------------------------------------------------- *)
(* Convenient conversion between files and (lists of) strings. *)
(* ------------------------------------------------------------------------- *)
let strings_of_file filename =
let fd = try Pervasives.open_in filename
with Sys_error _ ->
failwith("strings_of_file: can't open "^filename) in
let rec suck_lines acc =
try let l = Pervasives.input_line fd in
suck_lines (l::acc)
with End_of_file -> rev acc in
let data = suck_lines [] in
(Pervasives.close_in fd; data);;
let string_of_file filename =
end_itlist (fun s t -> s^"\n"^t) (strings_of_file filename);;
let file_of_string filename s =
let fd = Pervasives.open_out filename in
output_string fd s; close_out fd;;