-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathtest_calibration.py
51 lines (43 loc) · 1.58 KB
/
test_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from calib_tools import rmsce
k = 5
base_dir = "results"
models = [f.split("results_")[1] for f in os.listdir(base_dir) if "results" in f]
print(models)
for model in models:
dir = os.path.join(base_dir, "results_{}".format(model))
fnames = [f for f in os.listdir(dir) if ".csv" in f]
all_max_probs = []
all_cors = []
all_accs = []
all_confs = []
for fname in fnames:
subject = fname.split(".csv")[0]
fpath = os.path.join(dir, fname)
df = pd.read_csv(fpath)
max_probs = []
cors = []
for i in range(df.shape[0]):
probs = [df["{}_choice{}_probs".format(model, choice)][i] for choice in ["A", "B", "C", "D"]]
cors.append(int(df["{}_correct".format(model)][i]))
max_probs.append(np.max(probs))
all_max_probs += max_probs
all_cors += cors
all_accs.append(np.mean(cors))
all_confs.append(np.mean(max_probs))
avg_max_prob = np.mean(all_max_probs)
acc = np.mean(all_cors)
rms_ce = rmsce(np.array(all_cors), np.array(all_max_probs))
print("{} overall conf: {:.3f}, acc: {:.3f}, RMS: {:.3f}".format(model, avg_max_prob, acc, rms_ce))
plt.scatter(all_confs, all_accs)
min = np.minimum(np.min(all_confs), np.min(all_accs))
max = np.maximum(np.max(all_confs), np.max(all_accs))
x = np.arange(min, max, 0.01)
y = np.arange(min, max, 0.01)
plt.plot(x, y, c="r")
plt.xlabel("Confidence")
plt.ylabel("Accuracy")
plt.savefig("{}_calibration".format(model))