forked from PradeepG00/P3-SemanticSegmentation
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_R50.py
554 lines (471 loc) · 19.7 KB
/
train_R50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
# TODO: figure out the system for training given the config of the text file which
# specifies a .pth checkpoint to allow for resuming of a certain state of training
from typing import List
from utils import check_mkdir
from utils.config import AgricultureConfiguration
from utils.data.preprocess import prepare_ground_truth, TRAIN_DIR, VAL_DIR
from utils.export.visualization import colorize_mask, get_visualize
from utils.metrics.loss import ACWLoss
from utils.metrics.lr import init_params_lr
from utils.metrics.optimizer import Lookahead
from utils.metrics.validate import evaluate, AverageMeter
# from memory_profiler import profile
import datetime
import os.path
import random
import sys
import time
import numpy as np
import torch.cuda
import torchvision.utils as vutils
import tqdm
from tensorboardX import SummaryWriter
from torch import optim
from torch.backends import cudnn
from torch.utils.data import DataLoader
# from utils import get_available_gpus
# from utils import init_params_lr
from core.net import get_model
#####################################
# Setup Logging
#####################################
import logging
#################################################
# Logging Configuration
#################################################
def setup_logging(model_name) -> None:
logging.basicConfig(level=logging.DEBUG)
logFormatter = logging.Formatter(
"%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s"
)
rootLogger = logging.getLogger()
log_path = "./logs/{0}/{1}.log".format(
f"/{model_name}", f"{model_name}-{datetime.datetime.now():%d-%b-%y-%H:%M:%S}"
)
log_dir = f"./logs/{model_name}"
if os.path.exists(log_dir):
print("Saving log files to:", log_dir)
else:
print("Creating log directory:", log_dir)
os.mkdir(log_dir)
fileHandler = logging.FileHandler(log_path)
fileHandler.setFormatter(logFormatter)
rootLogger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
rootLogger.addHandler(consoleHandler)
#####################################
# Training Configuration
#####################################
model_name = "rx50"
cudnn.benchmark = True
train_args = AgricultureConfiguration(
net_name="MSCG-Rx50",
data="Agriculture",
bands_list=["NIR", "RGB"],
kf=0,
k_folder=0,
note="reproduce_ACW_loss2_adax",
)
train_args.input_size = [512, 512]
train_args.scale_rate = 1.0 # 256./512. # 448.0/512.0 #1.0/1.0
train_args.val_size = [512, 512]
train_args.node_size = (32, 32)
# train_args.train_batch = 1 # TODO: updated from 10 to 1 to assess mem leak issue
# train_args.val_batch = 1 # TODO: updated from 10 to 1 to assess mem leak issue
train_args.train_batch = 10 # TODO: updated from 10 to 1 to assess mem leak issue
train_args.val_batch = 10 # TODO: updated from 10 to 1 to assess mem leak issue
train_args.lr = 1.5e-4 / np.sqrt(3)
train_args.weight_decay = 2e-5
train_args.lr_decay = 0.9
train_args.max_iter = 1e8
train_args.snapshot = ""
# train_args.print_freq = 5 # TODO: updated from 100 to 5 to observe mem leak issue
train_args.print_freq = 100 # TODO: updated from 100 to 5 to observe mem leak issue
# train_args.save_pred = True # False DEFAULT, handled by a switch for saving X-number of epochs
# output training configuration to a text file
train_args.checkpoint_path = os.path.abspath(os.curdir)
if not os.path.exists(train_args.save_path):
raise NotADirectoryError(train_args.save_path, "does not exist")
else:
logging.debug("Verified existing path: {}".format(train_args.save_path))
tb_dir = os.path.join(train_args.save_path, "tblog")
logging.debug("Saving tensorboard results to: {}".format(tb_dir))
writer = SummaryWriter(tb_dir)
visualize, restore = get_visualize(train_args)
# Remember to use num_workers=0 when creating the DataBunch.
def random_seed(seed_value, use_cuda=True):
np.random.seed(seed_value) # cpu vars
torch.manual_seed(seed_value) # cpu vars
random.seed(seed_value) # Python
if use_cuda:
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value) # gpu vars
torch.backends.cudnn.deterministic = True # needed
torch.backends.cudnn.benchmark = False
# TODO: add configuring to train on a specified GPU
# TODO: add displaying of available GPUs and current usage
def train_rx50():
try:
setup_logging(model_name=model_name)
# DEBUG gpu selection TODO: need to allow for specification of gpu when training
# gpus = get_available_gpus(100, "mb")
# print(gpus)
# logging
prepare_ground_truth(VAL_DIR) # TODO: make configurable in CLI
prepare_ground_truth(TRAIN_DIR) # TODO: make configurable in CLI
random_seed(train_args.seeds)
train_args.write2txt()
net = get_model(
name=train_args.model_name,
classes=train_args.nb_classes,
node_size=train_args.node_size,
)
tblog_path = os.path.join(train_args.save_path, "tblog") # TODO: make configurable in CLI
if os.path.exists(tblog_path):
logging.debug("Logging TensorBoard results to: {}".format(tblog_path))
else:
logging.debug(
"TensorBoard directory does not exist. Creating directory in: {}".format(
tblog_path
)
)
os.mkdir(tblog_path)
# TODO: make configurable in CLI
checkpoint_path = "/home/hanz/github/P3-SemanticSegmentation/checkpoints/adam/MSCG-Rx50/Agriculture_NIR-RGB_kf-0-0-reproduce_ACW_loss2_adax/MSCG-Rx50-epoch_12_loss_1.10420_acc_0.77547_acc-cls_0.55716_mean-iu_0.39809_fwavacc_0.64953_f1_0.53728_lr_0.0000784454.pth"
if checkpoint_path:
net, start_epoch = train_args.resume_train(
net,
checkpoint_path=checkpoint_path
)
net.load_state_dict(
torch.load(checkpoint_path, map_location=torch.device(1)), strict=False
)
else:
net, start_epoch = train_args.resume_train(
net,
)
# TODO: make GPU vs CPU configurable in CLI
net.train() # enable model trainability
torch.cuda.set_device(1) # configure to use GPU
net.cuda()
# TODO: make configurable in CLI
# TODO: simplify
# prepare dataset for training and validation
train_set, val_set = train_args.get_dataset()
train_loader = DataLoader(
dataset=train_set,
batch_size=train_args.train_batch,
num_workers=0,
shuffle=True,
)
val_loader = DataLoader(
dataset=val_set, batch_size=train_args.val_batch, num_workers=0
)
# TODO: make GPU vs CPU configurable in CLI
criterion = ACWLoss().cuda()
params = init_params_lr(net, train_args)
# first train with Adam for around 10 epoch, then manually change to SGD
# to continue the rest train, Note: need resume train from the saved snapshot
base_optimizer = optim.Adam(params, amsgrad=True)
# base_optimizer = optim.SGD(params, momentum=train_args.momentum, nesterov=True)
optimizer = Lookahead(base_optimizer, k=6)
# optimizer = AdaX(params)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, 60, 1.18e-6
)
# loop for the specific epochs for training
# new_ep = 12
new_ep = 0
print(checkpoint_path is not None and new_ep > 0)
if checkpoint_path is not None and new_ep > 0:
logging.debug(
f"Resuming using model at: {str(checkpoint_path)}\nstarting at epoch: {new_ep}"
)
EPOCHS = 40
while True:
start_time = time.time()
train_main_loss = AverageMeter()
aux_train_loss = AverageMeter()
cls_train_loss = AverageMeter()
start_lr = train_args.lr
train_args.lr = optimizer.param_groups[0]["lr"]
num_iter = len(train_loader)
curr_iter = ((start_epoch + new_ep) - 1) * num_iter
print(
"---curr_iter: {}, num_iter per epoch: {}---".format(
curr_iter, num_iter
)
)
logging.debug(
"---curr_iter: {}, num_iter per epoch: {}---".format(
curr_iter, num_iter
)
)
if new_ep % 5 == 0:
train_args.save_pred = True
else:
train_args.save_pred = False
# loop over training dataset for an epoch
for i, (inputs, labels) in enumerate(train_loader):
sys.stdout.flush()
# iterate for a training session
# TODO: make GPU vs CPU configurable in CLI
inputs, labels = (
inputs.cuda(),
labels.cuda(),
)
N = inputs.size(0) * inputs.size(2) * inputs.size(3)
optimizer.zero_grad()
outputs, cost = net(inputs)
main_loss = criterion(outputs, labels)
loss = main_loss + cost
loss.backward()
optimizer.step()
lr_scheduler.step(epoch=(start_epoch + new_ep))
train_main_loss.update(main_loss.item(), N)
aux_train_loss.update(cost.item(), inputs.size(0))
curr_iter += 1
# update tensorboard
writer.add_scalar("main_loss", train_main_loss.avg, curr_iter)
writer.add_scalar("aux_loss", aux_train_loss.avg, curr_iter)
# writer.add_scalar('cls_loss', cls_trian_loss.avg, curr_iter)
writer.add_scalar("lr", optimizer.param_groups[0]["lr"], curr_iter)
if (i + 1) % train_args.print_freq == 0:
new_time = time.time()
print(
"[epoch %d], [iter %d / %d], [loss %.5f, aux %.5f, cls %.5f], [lr %.10f], [time %.3f]"
% (
start_epoch + new_ep,
i + 1,
num_iter,
train_main_loss.avg,
aux_train_loss.avg,
cls_train_loss.avg,
optimizer.param_groups[0]["lr"],
new_time - start_time,
)
)
logging.debug(
"[epoch %d], [iter %d / %d], [loss %.5f, aux %.5f, cls %.5f], [lr %.10f], [time %.3f]"
% (
start_epoch + new_ep,
i + 1,
num_iter,
train_main_loss.avg,
aux_train_loss.avg,
cls_train_loss.avg,
optimizer.param_groups[0]["lr"],
new_time - start_time,
)
)
start_time = new_time
validate(
net,
val_set,
val_loader,
criterion,
optimizer,
start_epoch + new_ep,
new_ep,
) # TODO: moved into the for-loop body to assess potneital origin of mem leak issue
new_ep += 1
if new_ep > EPOCHS:
logging.debug("Completed training for: {} epochs".format(EPOCHS))
except Exception as e:
logging.debug(e)
def validate(net, val_set, val_loader, criterion, optimizer, epoch, new_ep):
"""Function that validates the Rx50 Model aggregating all the inputs from
the `val_loader` to be pipelined for predictions, calculating of loss and checkpointing the metrics
:param net:
:param val_set:
:param val_loader:
:param criterion:
:param optimizer:
:param epoch:
:param new_ep:
:return:
"""
# TODO: there appears to be a memory leak here or a loading of ALL data issue
# causing CPU RAM consumption to be extremely large, likely needs to use a generator...
logging.debug("validating and update metrics checkpoints")
net.eval()
val_loss = AverageMeter()
inputs_all, gts_all, predictions_all = [], [], [] # TODO: bad practice...?
logging.debug(f"validation loader size {len(val_loader)}")
start_time = time.time()
# evaluate w/o gradients b/c no need to calculate gradients for the outputs
with torch.no_grad():
logging.debug("aggregating input, predictions, and ground truths using CPU")
i = 0 # DEBUG
for vi, (inputs, gts) in tqdm.tqdm(enumerate(val_loader)):
# logging.debug(f"aggregate input, prediction, ground-truth -- iteration {i}")
# newsize = random.uniform(0.87, 1.78)
# val_set.winsize = np.array([train_args.input_size[0] * newsize,
# train_args.input_size[1] * newsize],
# dtype='int32')
# TODO: make GPU vs CPU configurable in CLI
inputs, gts = inputs.cuda(), gts.cuda()
N = inputs.size(0) * inputs.size(2) * inputs.size(3)
outputs = net(inputs)
# predictions = outputs.data.max(1)[1].squeeze_(1).squeeze_(0).cpu().numpy()
# val_loss+=criterion(outputs, gts).data[0]
val_loss.update(criterion(outputs, gts).item(), N)
# val_loss.update(criterion(gts, outputs).item(), N)
if random.random() > train_args.save_rate:
inputs_all.append(None)
else:
inputs_all.append(inputs.data.squeeze(0).cpu())
gts_all.append(gts.data.squeeze(0).cpu().numpy())
predictions = outputs.data.max(1)[1].squeeze(1).squeeze(0).cpu().numpy()
predictions_all.append(predictions)
i += 1 # DEBUG
# logging.debug(f"inputs {len(inputs_all)}, ground-truths {len(gts_all)}")
# logging.debug(sys.deep_getsizeof(gts_all))
# logging.debug(sys.getsizeof(inputs_all))
# logging.debug(sys.getsizeof(predictions_all))
end_time = time.time()
logging.debug(
f"aggregation time: {end_time - start_time} s ({(end_time - start_time) / 60} min)"
)
update_checkpoint(
net, optimizer, epoch, new_ep, val_loss, inputs_all, gts_all, predictions_all
)
net.train() # enable model training
return (
val_loss,
inputs_all,
gts_all,
predictions_all,
) # TODO: is this necessary in the following function? is there another func dpcy
def update_checkpoint(
net, optimizer, epoch, new_ep, val_loss, inputs_all, gts_all, predictions_all
):
"""Primary function that checkpoints a models and writes its results to TensorBoard
TODO: needs refactor to find the acc, acc_clr, mean_iu, fwavacc, f1 on a single instance instead of on the collection which is
RAM intensive
:param net:
:param optimizer:
:param epoch:
:param new_ep:
:param val_loss:
:param inputs_all:
:param gts_all:
:param predictions_all:
:return:
"""
logging.debug("Updating tensorboard")
avg_loss = val_loss.avg
acc, acc_cls, mean_iu, fwavacc, f1 = evaluate(
predictions_all, gts_all, train_args.nb_classes
)
# update tensorboard
writer.add_scalar("val_loss", avg_loss, epoch)
writer.add_scalar("acc", acc, epoch)
writer.add_scalar("acc_cls", acc_cls, epoch)
writer.add_scalar("mean_iu", mean_iu, epoch)
writer.add_scalar("fwavacc", fwavacc, epoch)
writer.add_scalar("f1_score", f1, epoch)
updated = train_args.update_best_record(
epoch, avg_loss, acc, acc_cls, mean_iu, fwavacc, f1
)
# save best record and snapshot parameters
val_visual = []
snapshot_name = (
train_args.model_name
+ "-"
+ "epoch_%d_loss_%.5f_acc_%.5f_acc-cls_%.5f_mean-iu_%.5f_fwavacc_"
"%.5f_f1_%.5f_lr_%.10f"
% (
epoch,
avg_loss,
acc,
acc_cls,
mean_iu,
fwavacc,
f1,
optimizer.param_groups[0]["lr"],
)
)
logging.debug(
"checkpointing metrics at:",
os.path.join(train_args.save_path, snapshot_name + ".pth"),
)
torch.save(
net.state_dict(), os.path.join(train_args.save_path, snapshot_name + ".pth")
)
if updated or (train_args.best_record["val_loss"] > avg_loss):
logging.debug(
"checkpointing metrics at:",
os.path.join(train_args.save_path, snapshot_name + ".pth"),
)
torch.save(
net.state_dict(), os.path.join(train_args.save_path, snapshot_name + ".pth")
)
train_args.update_best_record(epoch, val_loss.avg, acc, acc_cls, mean_iu, fwavacc, f1)
# frequency of predictions saving
if train_args.save_pred:
if updated or (new_ep % 5 == 0):
val_visual = visual_checkpoint(
epoch, new_ep, inputs_all, gts_all, predictions_all
)
if len(val_visual) > 0:
val_visual = torch.stack(val_visual, 0)
val_visual = vutils.make_grid(val_visual, nrow=3, padding=5)
writer.add_image(snapshot_name, val_visual) # write to tensorboard
def visual_checkpoint(epoch: int, new_ep: int, inputs_all: List[np.ndarray], gts_all: List[np.ndarray],
predictions_all: List[np.ndarray]) -> List:
"""Function for handling coloring of ground-truths and predictions during model
checkpointing in the training process
:param epoch:
:param new_ep:
:param inputs_all:
:param gts_all:
:param predictions_all:
:return:
"""
val_visual = []
if train_args.save_pred:
to_save_dir = os.path.join(train_args.save_path, str(epoch) + "_" + str(new_ep))
logging.debug("creating save directory at: {}".format(to_save_dir))
check_mkdir(to_save_dir)
for idx, data in enumerate(zip(inputs_all, gts_all, predictions_all)):
if data[0] is None:
continue
if train_args.val_batch == 1:
input_pil = restore(data[0][0:3, :, :])
gt_pil = colorize_mask(data[1], train_args.palette)
predictions_pil = colorize_mask(data[2], train_args.palette)
else:
input_pil = restore(data[0][0][0:3, :, :]) # only for the first 3 bands
# input_pil = restore(data[0][0])
gt_pil = colorize_mask(data[1][0], train_args.palette)
predictions_pil = colorize_mask(data[2][0], train_args.palette)
# if train_args['val_save_to_img_file']:
if train_args.save_pred:
logging.debug(
"Saving predictions, input, and ground-truths in: {}".format(
to_save_dir
)
)
input_pil.save(os.path.join(to_save_dir, "%d_input.png" % idx))
predictions_pil.save(os.path.join(to_save_dir, "%d_prediction.png" % idx))
gt_pil.save(os.path.join(to_save_dir, "%d_gt.png" % idx))
# collect visuals
val_visual.extend(
[
visualize(input_pil.convert("RGB")),
visualize(gt_pil.convert("RGB")),
visualize(predictions_pil.convert("RGB")),
]
)
return val_visual
# def check_mkdir(dir_name):
# if not os.path.exists(dir_name):
# os.mkdir(dir_name)
if __name__ == "__main__":
train_rx50()