forked from joreeves/agi2nerf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagi2nerf.py
406 lines (305 loc) · 11.1 KB
/
agi2nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import argparse
import xml.etree.ElementTree as ET
import math
import numpy as np
from copy import deepcopy as dc
from utils import agiMat2Nerf, sharpness, central_point, plot, _plt
import json
from tqdm import tqdm
from pathlib import Path
def parse_args():
parser = argparse.ArgumentParser(description="convert Agisoft XML export to nerf format transforms.json")
parser.add_argument("--xml_in", help="specify xml file location") #TODO: Chang to positional argument
parser.add_argument("--out", dest="path", default="transforms.json", help="output path")
parser.add_argument("--imgfolder", default="./images/", help="location of folder with images")
parser.add_argument("--imgtype", default="jpg", help="type of images (ex. jpg, png, ...)")
parser.add_argument("--aabb_scale", default=16, type=int, help="size of the aabb, default is 16")
parser.add_argument("--plot", action="store_true", help="plot the cameras and the bounding region in 3D")
parser.add_argument("--scale", default=1.0, type=float, help="scale the scene by a factor")
parser.add_argument("--no_scale", action="store_true", help="DISABLES the scaling of the cameras to the bounding region")
parser.add_argument("--no_center", action="store_true", help="DISABLES the centering of the cameras around the computed central point")
parser.add_argument("--camera_size", default=0.1, type=float, help="size of the camera in the 3D plot. Does not affect the output.")
parser.add_argument("--debug_ignore_images", action="store_true", help="IGNORES the images in the xml file. For debugging purposes only.")
args = parser.parse_args()
return args
def parse_region(xml_root):
"""
Parse the region xml
The xml is formatted as follows:
<region>
<center>0 0 0.5</center>
<size>1 1 1</size>
<R>1 0 0 0 1 0 0 0 1</R>
</region>
"""
region = xml_root.find('.//region')
center = np.array([float(i) for i in region.find('center').text.split()])
size = np.array([float(i) for i in region.find('size').text.split()])
rotation = np.array([float(i) for i in region.find('R').text.split()]).reshape(3,3)
mat = np.eye(4)
mat[:3,:3] = rotation.T # Why transpose? Don't ask questions...
mat[:3,3] = center
return mat, size
def parse_components(xml_root):
"""
Parse the transform and region from components of the xml
The xml is formatted as follows:
<components next_id="1" active_id="0">
<component id="0" label="Component 1">
<transform>
<rotation locked="true">1 0 0 0 1 0 0 0 1</rotation>
<translation locked="true">0 0 0</translation>
<scale locked="true">1</scale>
</transform>
<region>
<center>0 0 0.5</center>
<size>1 1 1</size>
<R>1 0 0 0 1 0 0 0 1</R>
</region>
</component>
</components>
"""
# http://wiki.agisoft.com/wiki/Coordinate_System_to_Bounding_Box.py
# https://www.agisoft.com/forum/index.php?topic=6176.0
comp = xml_root.find('.//components/component')
if comp is None:
return None
xml_tform = comp.find('transform')
xml_region = comp.find('region')
if xml_tform is None:
scene = (None, None)
else:
rotation = np.array([float(i) for i in xml_tform.find('rotation').text.split()]).reshape(3,3)
translation = np.array([float(i) for i in xml_tform.find('translation').text.split()])
scale = np.array([float(i) for i in xml_tform.find('scale').text.split()])
mat = np.eye(4)
mat[:3,:3] = rotation
mat[:3,3] = translation
# mat = pytr.scale_transform(mat, s_d=scale)
scene = mat, scale
if xml_region is None:
region = (None, None)
else:
center = np.array([float(i) for i in xml_region.find('center').text.split()])
size = np.array([float(i) for i in xml_region.find('size').text.split()])
rotation = np.array([float(i) for i in xml_region.find('R').text.split()]).reshape(3,3)
mat = np.eye(4)
mat[:3,:3] = rotation.T # Why transpose? Don't ask questions...
mat[:3,3] = center
region = mat, size
print(scene, region)
return scene, region
def parse_xform(cam):
xform = cam.find('transform')
# These are unused right now
# rotation_covariance = cam.find('rotation_covariance')
# location_covariance = cam.find('location_covariance')
if xform is None:
return None
mat = np.array([float(i) for i in xform.text.split()]).reshape(4,4)
return mat
def parse_camera(cam):
if not len(cam):
return None
if(cam.find('transform') == None):
return None
# Get the camera label and sensor id
# So we can match the sensor to the camera
label = cam.get("label")
sensor_id = cam.get("sensor_id")
current_camera = dict()
current_camera['label'] = str(label)
current_camera['sensor_id'] = int(sensor_id)
current_camera['transform_matrix'] = parse_xform(cam)
return current_camera
def parse_sensor(sensor):
out = dict()
# Get the sensor id
id = sensor.get("id")
out['id'] = int(id)
# Calibration coefficients and parameters
# https://www.agisoft.com/pdf/metashape-pro_1_5_en.pdf
# (F, Cx, Cy, B1, B2, K1, K2, K3, K4, P1, P2, P3, P4)
calib = sensor.find('calibration')
if (calib is None):
print("No calibration found for sensor {}".format(id))
# Get the sensor resolution
res = sensor.find("resolution")
w = float(res.get('width'))
h = float(res.get('height'))
"""
Get the pixel width and height
The xml is formatted as follows:
<sensor id="" label="" type="frame">
<resolution width="4000" height="6000"/>
<property name="pixel_width" value=""/>
<property name="pixel_height" value="0.0039083244579612101"/>
<property name="focal_length" value="55"/>
<property name="layer_index" value="0"/>
"""
properties = sensor.findall('property')
pixel_width = float(properties[0].get('value'))
pixel_height = float(properties[1].get('value'))
# Get the focal length in mm
focal_length = float(properties[2].get('value'))
# Given the w, h, pixel_width, pixel_height, and focal_length
# Calculate the focal length in pixels
fl_pxl = (w * focal_length) / (w * pixel_width)
camera_angle_x = math.atan(float(w) / (float(fl_pxl) * 2)) * 2
camera_angle_y = math.atan(float(h) / (float(fl_pxl) * 2)) * 2
out["camera_angle_x"] = camera_angle_x
out["camera_angle_y"] = camera_angle_y
out["fl_x"] = fl_pxl
out["fl_y"] = fl_pxl
out["w"] = w
out["h"] = h
else:
res = calib.find("resolution")
w = float(res.get('width'))
h = float(res.get('height'))
fl_x = float(calib.find('f').text)
fl_y = fl_x
k1 = float(calib.find('k1').text if calib.find('k1') is not None else -1)
k2 = float(calib.find('k2').text if calib.find('k2') is not None else -1)
p1 = float(calib.find('p1').text if calib.find('p1') is not None else -1)
p2 = float(calib.find('p2').text if calib.find('p2') is not None else -1)
cx = float(calib.find('cx').text if calib.find('cx') is not None else 0) + w/2
cy = float(calib.find('cy').text if calib.find('cy') is not None else 0) + h/2
camera_angle_x = math.atan(float(w) / (float(fl_x) * 2)) * 2
camera_angle_y = math.atan(float(h) / (float(fl_y) * 2)) * 2
out["camera_angle_x"] = camera_angle_x
out["camera_angle_y"] = camera_angle_y
out["fl_x"] = fl_x
out["fl_y"] = fl_y
out["k1"] = k1
out["k2"] = k2
out["p1"] = p1
out["p2"] = p2
out["cx"] = cx
out["cy"] = cy
out["w"] = w
out["h"] = h
return out
def calibration(root, stems, _scale=1.0, _no_scale=False, _ignore_images=False):
'''
Take the xml file and generate the calibration data
The xml is formated as follows:
<document>
<chunk>
<sensors>
<sensor>
<calibration>
<resolution>
<f>
...
<components>
<component>
<cameras>
<camera>
<transform>
<rotation_covariance>
<location_covariance>
<reference>
<region>
<settings>
<meta>
'''
sensors = root.findall('.//sensor')
cameras = root.findall('.//camera')
sensors = [parse_sensor(s) for s in sensors]
cameras = [parse_camera(c) for c in cameras]
# Remove empty cameras
cameras = [c for c in cameras if c]
# Transform the cameras to the component's coordinate system
scene, region = parse_components(root)
scene_mat, scene_scale = scene
region_mat, region_scale = region
scene_scale = scene_scale if not _no_scale else 1.0
scene_scale *= _scale
for c in cameras:
M = c['transform_matrix']
if (scene_mat is not None) & (scene_scale is not None):
M[:3,3] = M[:3,3] * scene_scale
M = np.dot(scene_mat, M)
c['transform_matrix'] = agiMat2Nerf(M)
calib = []
# Match sensors to cameras
#TODO: There's probably a better way to do this...
for c in cameras:
for s in sensors:
if(c['sensor_id'] == s['id']):
calib.append((dc(c), dc(s)))
break
print("\nFound {} cameras and {} sensors".format(len(cameras), len(sensors)))
print("\nFound {} matching cameras and sensors".format(len(calib)))
frames = []
pbar = tqdm(total=len(root[0][2]))
for camera, sensor in calib:
pbar.update(1)
if (camera is None) or (sensor is None):
print('No camera or sensor found')
continue
if not _ignore_images:
# Check if label is in image folder
label = [str(f) for f in stems if(str(f) in camera['label'])]
if(len(label) == 0):
print('No matching image found for: {}'.format(camera['label']))
continue
imagePath = IMGFOLDER + '/' + label[0] + "." + IMGTYPE
# Check if image exists
if(Path(imagePath).is_file() == False):
print('Image not found in path: {}'.format(imagePath))
continue
# Set the image path
camera["file_path"] = imagePath
camera["sharpness"] = sharpness(imagePath)
del camera['label']
del camera['sensor_id']
del sensor['id']
frame = sensor
frame.update(camera)
frames.append(frame)
if (region_mat is None) or (region_scale is None):
print('No bounding region found')
region = None
else:
if (scene_mat is not None) & (scene_scale is not None):
region_mat[:3,3] *= scene_scale # Scale the transform
region_mat = np.dot(scene_mat, region_mat) # Rotate the bbox to match the scene
region_scale *= scene_scale
region_mat = agiMat2Nerf(region_mat) # Convert to the coordinates
region = dict(transform_matrix=region_mat, size=region_scale)
return frames, region
if __name__ == "__main__":
args = parse_args()
XML_LOCATION = args.xml_in
IMGTYPE = args.imgtype
IMGFOLDER = args.imgfolder
files = list(Path(IMGFOLDER).glob('*.{}'.format(IMGTYPE)))
stems = list([f.stem for f in files])
# Check if the files path has images in it
if(len(files)==0) & (args.debug_ignore_images==False):
print('No images found in folder: {}'.format(IMGFOLDER))
exit()
out = dict()
out['aabb_scale'] = args.aabb_scale
with open(XML_LOCATION, "r") as f:
xml_root = ET.parse(f).getroot()
# See issue for multi camera support
# https://github.com/NVlabs/instant-ngp/discussions/797
frames, region = calibration(xml_root, stems,
args.scale, args.no_scale, args.debug_ignore_images)
out['frames'] = frames
if args.no_center:
center = np.zeros(3)
else:
# Compute the center of attention
center = central_point(out)
# Set the offset and convert to list
for f in out["frames"]:
f["transform_matrix"][0:3,3] -= center
f["transform_matrix"] = f["transform_matrix"].tolist()
with open(args.path, "w") as f:
json.dump(out, f, indent=4)
if _plt & args.plot:
plot(out, center, region, args.camera_size)