Skip to content

Latest commit

 

History

History
52 lines (39 loc) · 2.33 KB

README.md

File metadata and controls

52 lines (39 loc) · 2.33 KB

Conditional VAE in JAX

WIP. This repository will (hopefully) contain an implementation of the conditional variational autoencoder (CVAE) introduced in Learning Structured Output Representation using Deep Conditional Generative Models in JAX.

Setup.

We model the MNIST images as samples from a generative model $p_{\boldsymbol \theta}(\mathbf{x}, \mathbf{z}) = p_{\boldsymbol \theta}(\mathbf{z}) p_{\boldsymbol \theta}(\mathbf{x} \mid \mathbf{z})$.

Following Section 3 of [1], we let

  • the prior over the latent variables be the centered isotropic multivariate Gaussian $p_{\boldsymbol \theta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$. Especially, there are no unknown model parameters in the prior.
  • $p_{\boldsymbol \theta}(\mathbf{x} \mid \mathbf{z})$ be multivariate Gaussian with mean $\boldsymbol \mu_{\boldsymbol \theta}(\mathbf{z})$ and diagonal covariance matrix $\boldsymbol \sigma^2_{\boldsymbol \theta}(\mathbf{z})$. The distribution parameters are computed from $\mathbf{z}$ using a neural network with parameters $\boldsymbol \theta$.

Common questions.

  1. How is the Kullback-Leibler divergence term in the VAE loss function derived?

    The VAE loss function contains a term for the Kullback-Leibler (KL) divergence between the approximate posterior $q_\phi(z \mid x^{(i)})$ and the prior $p_\theta(z)$.

    Recall that in general the Kullback-Leibler (KL) divergence between two multivariate Gaussian distributions with mean vectors $\mu_1$ and $\mu_2$ and covariance matrices $\Sigma_1$ and $\Sigma_2$ is given by

$$ \mathbb{D}_\text{KL}( \mathcal{N}(\mu_1, \Sigma_1) \mid\mid \mathcal{N}(\mu_2, \Sigma_2) ) = \frac{1}{2} \left( \log \frac{ \det \Sigma_2 }{ \det \Sigma_1 } - n + \text{tr}(\Sigma_2^{-1} \Sigma_1) + (\mu_2 - \mu_1)^\top \Sigma_2^{-1} (\mu_2 - \mu_1) \right). $$

(see [here](https://stanford.edu/~jduchi/projects/general_notes.pdf) for detailed derivation).

References

[1] D. Kingma and M. Welling. Auto-Encoding Variational Bayes. 2nd International Conference on Learning Representations (ICLR 2014), Banff, AB, Canada.