-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplay-model.py
157 lines (147 loc) · 6.74 KB
/
play-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from absl import app
from absl import flags
import tensorflow as tf
import tensorflow_probability as tfp
import keras
from keras.layers import Input,Dense
from keras.utils import normalize
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import TensorBoard
import numpy as np
import gym
import gym_kiloBot
import time
import os
FLAGS = flags.FLAGS
flags.DEFINE_integer("modules",10,"Defines the no of modules in the env")
flags.DEFINE_integer("time_steps",10000000,"This is the no of steps that the env would take before stoping")
flags.DEFINE_integer("histRange",10,"Defines the steps for the histograms")
flags.DEFINE_string("objective","graph","This defines which task is to be choosen")
flags.DEFINE_string("load_checkpoint",None,"specifies the location of the checkpoint to start training from")
flags.mark_flag_as_required('load_checkpoint')
hyperparam={
'gamma':0.99, ## Mostly we can try using averaging rewards
'actor_lr':1e-4,
'critic_lr':1e-3,
'lambda':0.65,
}
class ModelActor(tf.keras.Model):
def __init__(self,input_dims,no_action=2):
super().__init__()
self.state_input=Input(shape=input_dims,name="state_input")
self.fc1 = Dense(1024,activation='elu',name='forward1',kernel_initializer=keras.initializers.RandomUniform(minval=-1./1024,maxval=1./1024))
self.fc2 = Dense(512,activation='elu',name='forward2',kernel_initializer=keras.initializers.RandomUniform(minval=-1./512,maxval=1./512))
self.fc3 = Dense(256,activation='elu',name='forward3',kernel_initializer=keras.initializers.RandomUniform(minval=-1./256,maxval=1./256))
self.fc4 = Dense(128,activation='elu',name='forward4',kernel_initializer=keras.initializers.RandomUniform(minval=-1./128,maxval=1./128))
self.mu = Dense(no_action,activation='linear',name='mu1',kernel_initializer=keras.initializers.RandomUniform(minval=-3e-3,maxval=3e-3))
self.sigma = Dense(no_action,activation='linear',name='sigma1',kernel_initializer=keras.initializers.RandomUniform(minval=-3e-3,maxval=3e-3))
def call(self,input_data):
#x = self.state_input(input_data)
x = self.fc1(input_data)
x = self.fc2(x)
x = self.fc3(x)
x = self.fc4(x)
probmu = self.mu(x)
probsigma = self.sigma(x)
probsigma = tf.nn.softplus(probsigma) + 1e-5
return probmu,probsigma
def setup(self,gamma=0.99):
self.gamma = gamma
self.optimizer = Adam(lr=hyperparam['actor_lr'])
def act(self,state):
probmu, probsigma = self(np.array(state))
dist = tfp.distributions.Normal(loc=probmu.numpy(),scale=probsigma.numpy())
action = dist.sample([1])
return action.numpy()
def actor_loss(self,probmu,probsigma,actions,td):
dist = tfp.distributions.Normal(loc=probmu,scale=probsigma)
log_prob = dist.log_prob(actions + 1e-5)
loss = -log_prob*td
return loss
def learn(self,prev_state,td):
with tf.GradientTape() as tape:
pm,ps = self(prev_state,training=True)
action = self.act(prev_state)
a_loss = self.actor_loss(pm,ps,action,td)
grads = tape.gradient(a_loss,self.trainable_variables)
self.optimizer.apply_gradients(zip(grads,self.trainable_variables))
return a_loss
def preprocessReplayBuffer(states,actions,rewards,gamma):
discountedRewards = []
sum_reward = 0
rewards.reverse()
for r in rewards:
sum_reward = r + gamma*sum_reward
discountedRewards.append(sum_reward)
discountedRewards.reverse()
states = np.array(states, dtype=np.float32)
actions = np.array(action, dtype=np.float32)
discountedRewards = np.array(discountedRewards,dtype=np.float32)
return states, actions, discountedRewards
def fetch_states_localize(observation,info,env):
prev_state = np.append(np.array(info.get('localization_bit')).reshape(-1,1),
observation,axis=1)
prev_state = np.append(np.array(info.get('target_distance')).reshape(-1,1),
prev_state,axis=1)
prev_state = np.append(np.array(info.get('neighbouring_bit')).reshape(-1,1),
prev_state,axis=1)
critic_prev_state = np.array([module.get_state(normalized=True) for module in env.modules],dtype=np.float32).reshape(1,-1)
critic_prev_state = np.append(np.array((env.target[0]-env.screen_width/2,env.target[1]-env.screen_heigth/2)).reshape(1,-1),critic_prev_state)
return prev_state,critic_prev_state
def fetch_states_graph(observation,info,env):
prev_state = observation
critic_prev_state = np.array([module.get_state() for module in env.modules],dtype=np.float32).reshape(1,-1)
return prev_state,critic_prev_state
def play(argv):
env = gym.make("kiloBot-v0",
n=FLAGS.modules,
k=FLAGS.histRange,
render= True,
objective=FLAGS.objective,
screen_width=500,
screen_heigth=500,
)
obj = False
if FLAGS.objective=='localization':
actor_model = ModelActor((None,env.k+3),no_action=2)
obj = True
else:
actor_model = ModelActor((None,env.k),no_action=2) ## This is just k hist features
#actor_model.load_weights(os.getcwd()+"/"+FLAGS.load_checkpoint+"/actor_model.h5")
iter = 0
env.reset() ## Doing this ensures the image feed has initialized
a = env.dummy_action(0.1,5)
observation,_,_,info = env.step([a]*env.n)
if obj:
fetch_states = fetch_states_localize
else:
fetch_states = fetch_states_graph
prev_state,_ = fetch_states(observation,info,env)
actor_model.setup(gamma=hyperparam['gamma'])
actor_model.act(prev_state)
actor_model.load_weights(os.getcwd()+"/"+FLAGS.load_checkpoint+"/actor_model.h5")
best_reward = -100000
while iter<FLAGS.time_steps:
iter +=1
env.render()
action_inputs = np.squeeze(actor_model.act(prev_state))
actions = []
for action_input in action_inputs:
actions.append(env.dummy_action(max(min(action_input[0],2*np.pi),-2*np.pi),max(min(action_input[1],10),0)))
observation,reward,done,info = env.step(actions)
state,_ = fetch_states(observation,info,env)
prev_state = state
best_reward = max(reward,best_reward)
if iter%10000==0:
env.reset()
observation,_,_,info = env.step([a]*env.n)
prev_state,_ = fetch_states(observation,info,env)
if iter%100==0:
print("iter "+str(iter)+" yeilds reward :"+str(reward))
if done:
env.reset()
prev_state,critic_prev_state = fetch_states(observation,info,env)
env.close()
if __name__=='__main__':
app.run(play)