-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess_csv_theme.py
61 lines (55 loc) · 2.13 KB
/
preprocess_csv_theme.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pandas as pd
import json
import argparse
def main(args):
df = pd.read_csv(args.data_csv)
df["Theme"] = df["Theme"].apply(lambda x: "".join(list(filter(lambda s: "a"<=s<="z" or "A"<=s<="Z" or s=="_", x))))
theme_df = df.groupby("Theme")
for group in theme_df.groups.keys():
js = {}
js["version"]= "2.1"
js["data"] = []
group_df = theme_df.get_group(group).groupby("Paragraph")
parajs = {}
parajs["paragraphs"] = []
context_useful = False
for para in group_df.groups.keys():
contjs = {}
contjs["context"] = para
contjs["qas"] = []
questionable = False
unique_que = group_df.get_group(para).groupby("Question")
for que in unique_que.groups.keys():
qasjs = {}
qasjs["question"] = que
ans = unique_que.get_group(que)
qasjs["answers"] = []
qasjs["id"] = str(ans.index[0])
answerable=False
for i in range(len(ans)):
if len(ans["Answer_start"].iloc[i])<=2:
qasjs["answers"].append({
"text": "",
"answer_start": 0,
})
continue
qasjs["answers"].append({
"text": ans["Answer_text"].iloc[i][2:-2],
"answer_start": int(ans["Answer_start"].iloc[i][1:-1]),
})
answerable=True
contjs["qas"].append(qasjs)
if answerable:
questionable = True
parajs["paragraphs"].append(contjs)
if questionable:
context_useful = True
if context_useful:
js["data"].append(parajs)
with open("devrev_train/"+group+"_train_data", "w") as f:
json.dump(js, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data-csv', type=str, default='train_data')
args = parser.parse_args()
main(args)