-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathGameStateValueBehaviour.java
1466 lines (1328 loc) · 55.4 KB
/
GameStateValueBehaviour.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package net.demilich.metastone.game.behaviour;
import com.hiddenswitch.spellsource.rpc.Spellsource.ActionTypeMessage.ActionType;
import com.hiddenswitch.spellsource.rpc.Spellsource.CardTypeMessage.CardType;
import com.hiddenswitch.spellsource.rpc.Spellsource.EntityTypeMessage.EntityType;
import com.hiddenswitch.diagnostics.Tracing;
import io.opentracing.util.GlobalTracer;
import net.demilich.metastone.game.GameContext;
import net.demilich.metastone.game.Player;
import net.demilich.metastone.game.actions.GameAction;
import net.demilich.metastone.game.behaviour.heuristic.FeatureVector;
import net.demilich.metastone.game.behaviour.heuristic.Heuristic;
import net.demilich.metastone.game.behaviour.heuristic.ThreatBasedHeuristic;
import net.demilich.metastone.game.cards.Attribute;
import net.demilich.metastone.game.cards.Card;
import net.demilich.metastone.game.entities.Actor;
import net.demilich.metastone.game.entities.Entity;
import net.demilich.metastone.game.logic.GameLogic;
import net.demilich.metastone.game.logic.TurnState;
import net.demilich.metastone.game.spells.BuffSpell;
import net.demilich.metastone.game.spells.DamageSpell;
import net.demilich.metastone.game.spells.MetaSpell;
import net.demilich.metastone.game.spells.aura.Aura;
import net.demilich.metastone.game.spells.desc.SpellArg;
import net.demilich.metastone.game.spells.desc.SpellDesc;
import net.demilich.metastone.game.spells.trigger.Enchantment;
import net.demilich.metastone.game.spells.trigger.TurnEndTrigger;
import net.demilich.metastone.game.spells.trigger.TurnStartTrigger;
import net.demilich.metastone.game.spells.trigger.TurnTrigger;
import net.demilich.metastone.game.targeting.EntityReference;
import net.demilich.metastone.game.targeting.TargetSelection;
import org.jetbrains.annotations.NotNull;
import org.jetbrains.annotations.Nullable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.Serializable;
import java.util.*;
import java.util.concurrent.ConcurrentLinkedDeque;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.Supplier;
import java.util.stream.Stream;
import static java.util.stream.Collectors.toList;
/**
* GameStateValueBehaviour is an implementation of a decent AI with the best-in-class performance among bots in the
* community.
* <p>
* The objective of the bot is to determine the best possible action from the list of actions it can choose from, given
* the current state of the game. In the AI community, this is called a "policy," and it is typically represented in the
* literature using the Greek letter Pi.
* <p>
* Policies take as inputs a list of actions, like "Friendly hero attacks opposing hero," and the current state of the
* game, in this case all the data available in {@link GameContext}, and returns an action as an output.
* {@link #requestAction(GameContext, Player, List)} corresponds to this AI's policy; when implementing an idea,
* especially from the literature, start with {@link #requestAction(GameContext, Player, List)}.
* <p>
* In this AI, {@link #requestAction(GameContext, Player, List)} tries each action available to take and scoring the
* outcome. The score, in this case, depends on the game state. The action that leads to the highest score is the action
* returned by {@link #requestAction(GameContext, Player, List)}. Since card games typically involve combos (sequences
* of actions), this AI will actually play out all available actions until the end of its turn, seeking which starting
* action will maximize its score at the **end** of its turn.
* <p>
* Therefore, the best way to describe this AI is: It is a "single turn horizon" AI. That is, it tries to pick actions
* to maximize a score by the end of the turn.
* <p>
* Playing around secrets is difficult without a long-term vision of the game, so enemy secrets are omitted from the
* simulation entirely. The bot's and opponennt's start turn effects are heuristically triggered at the end of the
* turn.
* <p>
* How does the AI do scoring? Clearly, it can't be as simple as, "The highest score is whatever reduces the opponent's
* health the most." Indeed, this class uses a complex model for a score, called a {@link Heuristic}, which is capable
* of looking at any factor in the game state to contribute to the score. The specific heuristic used by this class is
* the {@link ThreatBasedHeuristic}. Visiting that class, it's clear that things like holding onto hard-removal cards,
* or fully destroying minions, contribute greatly to the score, along with the heroes' and minions' attack and
* hitpoints.
* <p>
* In order to understand the various tradeoffs between actions, the way the {@link Heuristic} is calculated should
* somehow reflect the actual ability of these actions to lead to victory. Clearly, the score for an action should, in
* an ideal world, be as simple as, "Whatever maximizes my chance of winning." But for the time being, answering that
* question is computationally impossible in this card game. Instead, GameStateValueBehaviour makes the assumption that
* across many games, maximizing some score at the end of my turn maximizes my chance of winning on average. Hearthstone
* generally rewards great tactical play, so this is a surprisingly robust assumption. But it isn't necessarily true for
* many games or for all cards in this game. However, this assumption makes this AI fast, so it is preferred in this
* context.
* <p>
* The {@link ThreatBasedHeuristic} tries to maximize the chance of winning by somehow relating its scoring mechanism to
* the actual outcome of a match. The <b>Cuckoo</b> application in the cluster package is the system that tweaks the
* scoring function in order to choose tweaks that corresponded to greater wins in the game. This approach makes
* GameStateValueBehaviour the best delivered AI in the Hearthstone community.
*
* @see #requestAction(GameContext, Player, List) to see how each action of the possible actions is tested for the one
* with the highest score.
*/
public class GameStateValueBehaviour extends IntelligentBehaviour {
public static final int DEFAULT_TARGET_CONTEXT_STACK_SIZE = 2 * 7 * 6 - 1;
public static final int DEFAULT_MAXIMUM_DEPTH = 3;
public static final int DEFAULT_TIMEOUT = 11800;
public static final int DEFAULT_LETHAL_TIMEOUT = 15000;
private final static Logger LOGGER = LoggerFactory.getLogger(GameStateValueBehaviour.class);
private static final ThreadLocal<AtomicLong> DEPTH = InheritableThreadLocal.withInitial(AtomicLong::new);
protected Heuristic heuristic;
protected FeatureVector featureVector;
protected String nameSuffix = "";
protected long timeout = DEFAULT_TIMEOUT;
protected Deque<GameAction> strictPlan;
protected Deque<Integer> indexPlan;
protected int maxDepth = DEFAULT_MAXIMUM_DEPTH;
protected long minFreeMemory = Long.MAX_VALUE;
protected boolean disposeNodes = true;
protected boolean parallel = false;
protected boolean forceGarbageCollection = false;
protected boolean throwOnInvalidPlan = false;
protected boolean pruneContextStack = true;
protected boolean throwsExceptions = false;
protected boolean expandDepthForLethal = true;
protected boolean triggerStartTurns = true;
protected boolean pruneEarlyEndTurn = false;
protected long lethalTimeout = DEFAULT_LETHAL_TIMEOUT;
protected int targetContextStackSize = DEFAULT_TARGET_CONTEXT_STACK_SIZE;
protected long requestActionStartTime = Long.MAX_VALUE;
public GameStateValueBehaviour() {
this(FeatureVector.getFittest(), "Botty McBotface");
}
public GameStateValueBehaviour(FeatureVector featureVector, String nameSuffix) {
this.featureVector = featureVector;
this.nameSuffix = nameSuffix;
this.heuristic = new ThreatBasedHeuristic(featureVector);
if (System.getenv().containsKey("SPELLSOURCE_GSVB_DEPTH")) {
this.maxDepth = Integer.parseInt(System.getenv("SPELLSOURCE_GSVB_DEPTH"));
}
if (System.getenv().containsKey("SPELLSOURCE_GSVB_TIMEOUT_MILLIS")) {
this.timeout = Long.parseLong(System.getenv("SPELLSOURCE_GSVB_TIMEOUT_MILLIS"));
}
}
/**
* Returns a clone of the game context, assuming the opponent is a {@link GameStateValueBehaviour} too.
*
* @param original The original game context to use.
* @return The clone.
*/
protected GameContext getClone(GameContext original) {
var context = original.clone();
return context;
}
@Override
public GameStateValueBehaviour clone() {
var clone = (GameStateValueBehaviour) super.clone();
if (featureVector != null) {
clone.featureVector = featureVector.clone();
}
if (indexPlan != null) {
clone.indexPlan = new ArrayDeque<>(indexPlan);
}
if (strictPlan != null) {
clone.strictPlan = new ArrayDeque<>(strictPlan);
}
return clone;
}
/**
* Indicates the maximum depth of breadth-first-searched nodes that should be expanded in order to find the highest
* scoring game state.
* <p>
* Setting this depth higher exponentially increases the number of nodes that could get visited for evaluating
* potential game state scores.
* <p>
* Setting this depth too low will make the bot miss lethal, especially if it has to use more than {@code maxDepth}
* cards or attack with more than {@code maxDepth} minions in order to kill the bot's opponent.
* <p>
* The default value on the hosted version of Spellsource is {@code 2}. For a good compromise between performance and
* finding the most commmon lethals, choose {@code 5}.
*
* @return The currently configured maximium depth.
*/
public int getMaxDepth() {
return maxDepth;
}
public GameStateValueBehaviour setMaxDepth(int maxDepth) {
this.maxDepth = maxDepth;
return this;
}
/**
* Indicates this game state value behaviour should throw exceptions when its underlying assumptions about the
* mechanics of the game are violated. For example, this will cause the GSVB to throw an exception if it is requested
* to evaluate discover actions directly.
*
* @return {@code true} if operating in debug mode.
*/
public boolean throwsExceptions() {
return throwsExceptions;
}
public GameStateValueBehaviour setThrowsExceptions(boolean throwsExceptions) {
this.throwsExceptions = throwsExceptions;
return this;
}
@Override
public String getName() {
return "Game state value " + nameSuffix;
}
/**
* A strict plan is a cache of a computed path (sequence of actions) to a gamestate stored as the actions themselves.
* <p>
* Whenever you call {@link #requestAction(GameContext, Player, List)}, the instance of
* {@link GameStateValueBehaviour} evaluates sequences of actions of length maximum {@link #getMaxDepth()}, and scores
* the value of the <b>last</b> game state (i.e. the game state you arrive at after performing that sequence of
* actions). But the {@link #requestAction(GameContext, Player, List)} method returns the <b>first</b> action in that
* sequence.
* <p>
* Clearly, the sequence of best actions isn't going to change before and after you take the {@link GameAction} that
* was returned by the first call to {@link #requestAction(GameContext, Player, List)}. This {@link Deque} stores the
* sequence that was computed as a side effect of {@link #requestAction(GameContext, Player, List)}. With it, the next
* call to {@link #requestAction(GameContext, Player, List)} doesn't have to recompute a whole sequence of actions
* every time; it can use whatever is left of the sequence of actions that led to the best scoring state.
* <p>
* Since game states are reproducible, and this behaviour "cheats" (it knows what the random seed is), there should be
* an exact match between the {@link Deque#peekFirst()}'d {@link GameAction} in this plan and a game action returned
* by {@link GameContext#getValidActions()} until the plan has been exhausted (i.e. the plan is
* {@link Deque#isEmpty()} {@code == true}).
* <p>
* Because the API of a {@link GameContext} does not guarantee that a {@link GameAction} has no references to the
* {@link GameContext} or its objects, this class also implements a {@link #getIndexPlan()}, which uses integers to
* represent an index into {@link GameContext#getValidActions()}.
* <p>
* For example, this code will "follow the plan" that was computed as a side effect of running
* {@link #requestAction(GameContext, Player, List)}.
* <pre>
* {@code
* while (!getStrictPlan().isEmpty()) {
* context.performGameAction(playerId, getStrictPlan().pollFirst());
* }
* }
* </pre>
*
* @return A path of actions (state transitions) towards the highest scoring game state.
* @see #getIndexPlan() for an equivalent representation of the path that does not use {@link GameAction} objects.
*/
public Deque<GameAction> getStrictPlan() {
return strictPlan;
}
public void setStrictPlan(Deque<GameAction> strictPlan) {
this.strictPlan = strictPlan;
}
/**
* Mulligans for cards, preferring to create an on-curve starting hand.
*
* @param context The game context.
* @param player The player who's mulliganing.
* @param cards The cards in the player's first hand.
* @return A list of cards to discard.
*/
@Override
public List<Card> mulligan(GameContext context, Player player, List<Card> cards) {
return super.mulligan(context, player, cards);
}
/**
* Requests an action from the GameStateValueBehaviour using a scoring function. This method uses a cache of what it
* has computed before if it is provided with {@link #setIndexPlan(Deque)} or {@link #setStrictPlan(Deque)}.
* <p>
* Suppose the board looked like this:
*
* <pre>
* Opponent: Warrior, 7 HP, no cards in hand, no minions on the board.
* This Player: Mage, 30 HP, a Fireball in the hand, 6 mana.
* </pre>
* <p>
* Clearly, this player has lethal: Fireballing the opponent, followed by Fireblasting the opponent, will win the
* game. There are two sequences of actions in this case that win the game. How does this function wind up returning
* the correct actions twice in order to win the game?
* <p>
* First, at the beginning of the turn, the request action function receives the above game state, followed by the
* possible actions:
*
* <pre>
* 1. Fireball opponent.
* 2. Fireball yourself.
* 3. Fireblast opponent.
* 4. Fireblast yourself.
* 5. End the turn.
* </pre>
* <p>
* Suppose we scored each action with a simple function: "1 point if the enemy hero is destroyed, otherwise 0."
*
* <pre>
* 1. Fireball opponent = 0 points.
* 2. Fireball yourself = 0 points.
* 3. Fireblast opponent = 0 points.
* 4. Fireblast yourself = 0 points.
* 5. End the turn = 0 points.
* </pre>
* <p>
* By just looking at the current actions, it's impossible to see that fireballing or fireblasting your opponent will
* lead to victory, even though the scoring function ought to work fine in this particular case.
* <p>
* What if instead we chose an action based on the score of the state at the end of the SEQUENCE of actions that
* particular action can enable? If we expand all the possible actions given our choices, we get:
*
* <pre>
* 1. Fireball opponent = 0 points.
* 1. Fireblast opponent = 1 point.
* **1. End turn = 1 point.**
* 2. Fireblast yourself = 0 points.
* 1. End Turn = 0 points.
* 3. End turn = 0 points.
* 2. Fireball yourself = 0 points.
* 1. Fireblast opponent = 0 points.
* 1. End turn = 0 points.
* 2. Fireblast yourself = 0 points.
* 1. End Turn = 0 points.
* 3. End turn = 0 points.
* 3. Fireblast opponent = 0 points.
* 1. Fireball opponent = 1 point.
* **1. End turn = 1 point.**
* 2. Fireball yourself = 0 points.
* 1. End Turn = 0 points.
* 3. End turn = 0 points.
* 4. Fireblast yourself = 0 points.
* 1. Fireball opponent = 0 points.
* 1. End turn = 0 points.
* 2. Fireball yourself = 0 points.
* 1. End Turn = 0 points.
* 3. End turn = 0 points.
* 5. End the turn = 0 points.
* </pre>
* <p>
* When expanding all the possible actions, there are now two sequences of actions that end with 1 point.
* <p>
* This function will return the FIRST action in the sequence that terminates with the highest score at the end of the
* turn. In this example, it will return either action 1 (Fireball opponent) or action 3 (Fireblast opponent).
* <p>
* The scoring function is much more complicated, but in broad strokes it works the way as described above.
*
* @param context The game context where the choice is being made.
* @param player The player who is making the choice.
* @param validActions The valid actions the player has to choose from.
* @return The action that maximizes the score of the state of the game at the end of this player's turn.
* @see ThreatBasedHeuristic for an overview of the scoring function.
*/
@Override
public @Nullable
GameAction requestAction(@NotNull GameContext context, @NotNull Player player, @NotNull List<GameAction> validActions) {
var tracer = GlobalTracer.get();
var span = tracer.buildSpan("GameStateValueBehaviour/requestAction")
.withTag("gameId", context.getGameId())
.withTag("deckId", (String) player.getAttributes().get(Attribute.DECK_ID))
.start();
// Isolate this context
context = context.clone();
player = context.getPlayer(player.getId());
var oldMaxDepth = getMaxDepth();
var oldTimeout = getTimeout();
Optional<Node> maxScore = Optional.empty();
Deque<Node> contextStack;
if (isParallel()) {
contextStack = new ConcurrentLinkedDeque<>();
} else {
contextStack = new ArrayDeque<>(getTargetContextStackSize() * getMaxDepth());
}
try (var s1 = tracer.activateSpan(span)) {
// Consistency checks
var gameId = context.getGameId();
if (validActions.size() == 0) {
LOGGER.error("requestAction {} {}: Empty valid actions given", gameId, player);
return null;
}
// First, check if a plan is already cached and ready to be executed
// The actual process of persisting the plan beyond the lifetime of this GameStateValueBehaviour instance is the
// responsibility of the caller, and should typically use #getIndexPlan()
// A strict plan refers to a collection of GameAction objects. A plan is "strictly" followed if the next action
// proposed in the strict plan is exactly present in the list of valid actions. Otherwise, the index plan is used,
// where the valid actions are assumed to be in the correct order.
if (strictPlan != null) {
if (strictPlan.size() == 0) {
strictPlan = null;
} else {
// Check that the plan action is valid considering these valid actions. If it is, choose it
var planAction = strictPlan.peekFirst();
if (validActions.contains(planAction)) {
LOGGER.debug("requestAction {} {}: Used action from plan with {} actions remaining", gameId, player, strictPlan.size() - 1);
// Reduce the size of the corresponding index plan too
if (!indexPlan.isEmpty()) {
indexPlan.pollFirst();
}
final var gameAction = strictPlan.pollFirst();
if (gameAction instanceof IntermediateAction) {
// Just choose directly from the valid actions
return validActions.get(gameAction.getId());
}
return gameAction;
} else {
// The plan is invalid, set it to null and continue.
if (throwOnInvalidPlan) {
throw new IllegalStateException("invalid plan");
} else {
LOGGER.warn("requestAction {} {}: Plan was invalidated, validActions={}, planAction={}", gameId, player, validActions, planAction);
}
strictPlan = null;
indexPlan = null;
}
}
} else if (indexPlan != null) {
if (indexPlan.size() == 0) {
indexPlan = null;
} else {
// Check that the plan action is valid considering these valid actions. If it is, choose it
int planAction = indexPlan.peekFirst();
if (validActions.size() > planAction) {
LOGGER.debug("requestAction {} {}: Used action from plan with {} actions remaining", gameId, player, indexPlan.size() - 1);
return validActions.get(indexPlan.pollFirst());
} else {
// The plan is invalid, set it to null and continue.
LOGGER.warn("requestAction {} {}: Plan was invalidated, validActions={}, planAction={}", gameId, player, validActions, planAction);
indexPlan = null;
}
}
}
if (validActions.size() == 1) {
LOGGER.debug("requestAction {} {}: Selecting only action {}", gameId, player, validActions.get(0));
return validActions.get(0);
}
// If the game state value behaviour got this far and has all discover actions, that means it is receiving a
// discover action it could not have evaluated in the context of intermediate nodes. This typically happens when
// gameplay causes a discover on a trigger, like a "Start of Game: Choose a new starting hero power."
if (validActions.stream().allMatch(a -> a.getActionType() == ActionType.DISCOVER || a.getActionType() == ActionType.BATTLECRY)) {
// We're going to choose an action at random at this point.
var finalContext = context;
span.setTag("trace", context.getTrace().dump());
var sources = validActions.stream().
map(ga -> ga.getSource(finalContext))
.filter(Objects::nonNull)
.map(Entity::getSourceCard)
.map(Card::getCardId)
.collect(toList());
span.setTag("validActionSources", String.join(",", sources));
if (throwsExceptions()) {
throw new UnsupportedOperationException();
}
return exceptionActionChoice(Optional.empty(), validActions);
}
// Depth-first search for the branch which terminates with the highest score, where the DAG has game states as
// nodes and game actions as edges
// Max depth indicates that we will expand at most MAX_DEPTH non-intermediate (non-Battlecry and non-Discover)
// actions away from the game context given to this function. If we have lethal on the board and we're configured
// to do so, we should temporarily expand the max depth to accommodate the number of cards we can play and actors
// that can attack we have.
if (isExpandDepthForLethal()
&& observesLethal(context, player.getId(), context.getOpponent(player).getHero())) {
var newMaxDepth = 0;
Actor actors[] = new Actor[player.getMinions().size() + 1];
player.getMinions().toArray(actors);
actors[actors.length - 1] = player.getHero();
for (var i = 0; i < actors.length; i++) {
var actor = actors[i];
var attacks = actor.getAttributeValue(Attribute.NUMBER_OF_ATTACKS) + actor.getAttributeValue(Attribute.EXTRA_ATTACKS);
if (attacks > 0 && actor.canAttackThisTurn(context)) {
newMaxDepth += attacks;
}
}
var cards = new Card[player.getHand().size() + 1];
player.getHand().toArray(cards);
cards[cards.length - 1] = player.getHeroPowerZone().get(0);
for (var i = 0; i < cards.length; i++) {
var card = cards[i];
if (context.getLogic().canPlayCard(player, card)) {
newMaxDepth += 1;
}
}
setMaxDepth(newMaxDepth);
setTimeout(lethalTimeout);
}
// Now we will actually start expanding game states
var playerId = player.getId();
// Immediately score terminal nodes to save memory.
var score = Double.NEGATIVE_INFINITY;
contextStack.push(new Node(context, null, 0));
setRequestActionStartTime(System.currentTimeMillis());
// Depth-first search loop with a twist.
// We will expand the longest nodes first. However, nodes that are terminal go to the end of the context stack,
// instead of the beginning, where they are popped first. Our heuristic is to prune all but the longest terminal
// nodes in order to save memory.
while (contextStack.size() > 0) {
traceMemory("node start");
var v = contextStack.pop();
// Is this node terminal?
if (isTerminal(v, playerId)) {
postProcess(playerId, v.context);
var newScore = heuristic.getScore(v.context, playerId);
v.setScore(newScore);
if (disposeNodes) {
v.dispose();
if (forceGarbageCollection) {
System.gc();
}
}
if (newScore > score) {
maxScore = Optional.of(v);
score = newScore;
}
// If we found lethal, we can terminate immediately
if (score == Double.POSITIVE_INFINITY) {
break;
} else {
continue;
}
}
// If we've been interrupted, peacefully exit this intense part of the code
if (isInterrupted()) {
break;
}
// Prune after we've scored, so that we don't accidentally prune a lethal node
pruneContextStack(contextStack, playerId);
final var depth = v.depth;
List<GameAction> edges;
if (v.predecessor == null) {
// Initial node
edges = validActions;
} else {
// Expand and compute scores
edges = v.context.getValidActions();
}
if (edges.isEmpty()) {
continue;
}
// Don't prune end turns if there are start or end turn triggers in play, because it may be significant to keep
// them around to get their effects.
if (isPruneEarlyEndTurn()
&& edges.size() > 1
&& context.getTriggers()
.stream().flatMap(t -> t instanceof Enchantment ? ((Enchantment) t).getTriggers().stream() : Stream.empty()).noneMatch(t -> t instanceof TurnTrigger)) {
edges.removeIf(ga -> ga.getActionType() == ActionType.END_TURN);
}
// Parallelize the expansion of nodes.
if (isParallel()) {
edges
.parallelStream()
.unordered()
.forEach(edge -> evaluate(contextStack, playerId, v, edge, depth));
} else {
// Non-parallel expansion of nodes
for (var edge : edges) {
evaluate(contextStack, playerId, v, edge, depth);
}
}
// We've expanded all of this node's edges, we can clear the reference to its game context
traceMemory("before node dispose");
if (isDisposeNodes()) {
v.dispose();
if (isForceGarbageCollection()) {
System.gc();
}
}
traceMemory("after node dispose");
}
if (maxScore.isEmpty()) {
if (throwsExceptions()) {
throw new NullPointerException("maxScore");
}
return exceptionActionChoice(maxScore, validActions);
}
// Save the action plan, iterating backwards from the highest scoring node.
GameAction gameAction = savePlan(maxScore);
if (gameAction == null) {
LOGGER.error("requestAction {} {}: A problem occurred while polling the strict plan, returning the first action.", gameId, player);
throw new NullPointerException("strict plan was empty");
}
return gameAction;
} catch (Throwable throwable) {
if (context.getTrace() != null) {
span.setTag("trace", context.getTrace().dump());
}
span.setTag("contextSizeSize", contextStack.size());
Tracing.error(throwable, span, true);
if (throwsExceptions()) {
throw throwable;
}
return exceptionActionChoice(maxScore, validActions);
} finally {
setTimeout(oldTimeout);
setMaxDepth(oldMaxDepth);
for (var node : contextStack) {
node.dispose();
}
span.finish();
}
}
/**
* Saves the plan and retrieves the game action from the max score
*
* @param maxScore
* @return
*/
@Nullable
protected GameAction savePlan(Optional<Node> maxScore) {
Deque<GameAction> strictPlan = new ArrayDeque<>();
Deque<Integer> indexPlan = new ArrayDeque<>();
var node = maxScore.get();
traceMemory("before predecessors");
while (node != null && node.getPredecessor() != null) {
for (var i = node.getActions().length - 1; i >= 0; i--) {
strictPlan.addFirst(node.getActions()[i]);
indexPlan.addFirst(node.getActionIndices()[i]);
}
node = node.getPredecessor();
}
traceMemory("after predecessors");
this.strictPlan = strictPlan;
this.indexPlan = indexPlan;
// Pop off the first element of the plan
this.indexPlan.pollFirst();
return strictPlan.pollFirst();
}
/**
* Checks if the bot has timed out or if the thread it is executing on is interrupted.
*
* @return
*/
protected boolean isInterrupted() {
return Thread.currentThread().isInterrupted()
|| (getTimeout() != 0 && System.currentTimeMillis() - getRequestActionStartTime() > getTimeout());
}
/**
* Gets the best scoring action, the end turn action or the first action in the list.
*
* @param maxScoreSoFar
* @param gameActions
* @return
*/
protected GameAction exceptionActionChoice(Optional<Node> maxScoreSoFar, @NotNull List<GameAction> gameActions) {
Node first = null;
if (maxScoreSoFar.isPresent()) {
first = maxScoreSoFar.get();
while (first.getPredecessor() != null) {
first = first.getPredecessor();
}
}
if (first == null || first.getActions() == null || first.getActions().length == 0) {
return gameActions.stream().filter(ga -> ga != null && ga.getActionType() == ActionType.END_TURN)
.findFirst().orElse(gameActions.get(0));
}
return first.getActions()[0];
}
/**
* Prunes the context stack to save memory. Removes terminal nodes that are not worth exploring heuristically.
*
* @param contextStack
* @param playerId
*/
protected void pruneContextStack(Deque<Node> contextStack, int playerId) {
if (!isPruneContextStack()) {
return;
}
if (contextStack.size() > getTargetContextStackSize()) {
// Remove all terminating actions except the longest one. Ensures that if we've encountered a terminal node, it
// won't get pruned off by accident.
var iterator = contextStack.descendingIterator();
Node longestNode = null;
var longestNodeLength = Integer.MIN_VALUE;
while (iterator.hasNext()) {
var node = iterator.next();
if (isTerminal(node, playerId)) {
if (node.depth > longestNodeLength) {
longestNode = node;
longestNodeLength = node.getActions().length;
}
} else {
// We always queue end turn actions at the end
break;
}
}
iterator = contextStack.descendingIterator();
if (longestNode != null) {
while (iterator.hasNext()) {
var node = iterator.next();
if (node == longestNode) {
break;
} else {
iterator.remove();
if (isDisposeNodes()) {
node.dispose();
}
}
}
}
// Continues to remove all but the longest nodes
while (iterator.hasNext()) {
if (contextStack.size() <= getTargetContextStackSize()) {
break;
}
var node = iterator.next();
iterator.remove();
if (isDisposeNodes()) {
node.dispose();
}
}
}
}
private boolean isTerminal(Node node, int playerId) {
return node.predecessor != null && (
node.depth >= getMaxDepth()
|| node.context.updateAndGetGameOver()
|| isInterrupted()
// Technically allows the bot to play through its extra turns
|| node.context.getActivePlayerId() != playerId);
}
/**
* Evaluates the provided game state with the provided action, then appends a new game state with potential actions to
* the {@code contextStack}. This expands the game tree by one unit of depth.
* <p>
* If rolling out the specified action leads to calls to {@link GameLogic#requestAction(Player, List)}, like a
* discover or a battlecry request, this method will breadth-first-search those intermediate actions until it gets to
* a non-intermediate game state (i.e., one with all of the intermediate action requests answered).
* <p>
* For example, consider the card: "Choose between two: 'Do nothing', and: 'Choose between do nothing and win the
* game.'" The action is to play this card. The following additional combinations of intermediate actions are
* created:
*
* <pre>
* 1. Discover and cast do nothing.
* 2. Discover and cast 'Choose between do nothing and win the game.'
* 1. Discover and cast 'Do nothing.'
* 2. Discover and cast 'Win the game.'
* </pre>
* Clearly, we want the bot to perform the following sequence of actions: Play this card, then make choices #2, #2,
* because that will win the game.
* <p>
* In order to choose that path without emitting intermediate nodes onto the {@code contextStack}, this function
* queues these intermediate actions and restarts from the beginning, evaluating a particular sequence it queued.
* Eventually, there is a sequence of actions queued that includes "play this card, make choice #2, then make choice
* #2," and since that sequence terminates into a non-intermediate game state, that sequence and the resulting game
* state are queued as a node onto the {@code contextStack}.
* <p>
* This optimization only applies to the particular architecture of Spellsource.
*
* @param contextStack The stack of contexts onto which this function should append rolled-out game states.
* @param playerId The player ID of the player whose point of view we're computing this rollout.
* @param node The node (i.e., game state) from which the specified action should be rolled out.
* @param action The action to roll out.
* @param depth The current depth of this rollout. This is the count of non-intermediate actions from the game
* state that {@link #requestAction(GameContext, Player, List)} was called with.
*/
protected void evaluate(Deque<Node> contextStack, int playerId, Node node, GameAction action, int depth) {
try {
DEPTH.get().incrementAndGet();
// Clone out the context because we're not going to mutate the node's context.
var mutateContext = getClone(node.context);
preProcess(playerId, mutateContext);
// Start: Infrastructure to support intermediate called to requestAction that come as a consequence of calling
// action.
Deque<IntermediateNode> intermediateNodes = new ArrayDeque<>();
var guard = new AtomicBoolean();
// Model the opponent as a random player.
mutateContext.setBehaviour(playerId == 0 ? 1 : 0, new PlayRandomBehaviour());
mutateContext.setBehaviour(playerId, new RequestActionFunction((context1, player1, validActions1) -> {
if (isInterrupted() || intermediateNodes.size() > getMaxDepth()) {
intermediateNodes.clear();
if (throwsExceptions()) {
throw new RuntimeException("interrupted");
}
return exceptionActionChoice(Optional.empty(), validActions1);
}
// This is a guard function that detects if intermediate game actions, like discovers or battlecries, are created
// while processing the edge we got from the parameters of the expandAndAppend call. If we reach this code, we
// have to process intermediate nodes separately. We'll queue the first batch here, and then throw away the result
// of the actual action we choose. We must use the guard, because a single performGameAction could call this
// RequestActionFunction multiple times, but we only want to queue up the first intermediate actions.
if (guard.compareAndSet(false, true)) {
for (var i = 0; i < validActions1.size(); i++) {
intermediateNodes.add(new IntermediateNode(i));
}
}
// Will now mutate the context in an unneeded branch.
return validActions1.get(0);
}));
if (isInterrupted()) {
// Bail out here if possible, does not queue new nodes.
return;
}
mutateContext.performAction(playerId, action);
// Check if there are intermediates pending
if (intermediateNodes.isEmpty()) {
var computeAction = new Node(mutateContext, node, depth + 1, action);
// Push the new node
if (action.getActionType() == ActionType.END_TURN) {
contextStack.addLast(computeAction);
} else {
// Depth first!
contextStack.addFirst(computeAction);
}
return;
}
// The intermediate node processing branch
while (intermediateNodes.size() > 0) {
if (isInterrupted()) {
return;
}
var intermediateNode = intermediateNodes.pollFirst();
if (intermediateNode == null) {
throw new UnsupportedOperationException("should not queue null nodes.");
}
// Process each intermediate, which may queue more of them. Create a request action function that returns the
// specified intermediate game action and also queues more intermediates if they are made.
var intermediateMutateContext = getClone(node.context);
preProcess(playerId, intermediateMutateContext);
var queueSize = intermediateNodes.size();
var choices = intermediateNode.choices;
var counter = new AtomicInteger(0);
var intermediateGuard = new AtomicBoolean();
intermediateMutateContext.setBehaviour(playerId, new RequestActionFunction((context, player, validActions) -> {
if (isInterrupted()) {
intermediateNodes.clear();
if (throwsExceptions()) {
throw new RuntimeException("interrupted");
}
return exceptionActionChoice(Optional.empty(), validActions);
}
// Make choices until we've exhausted the actions that were specified by this intermediate node.
var choiceIndex = counter.getAndIncrement();
if (choiceIndex >= choices.length) {
// We are queuing more intermediate nodes, mark this intermediate node as having queued more intermediates and
// this evaluation as having expanded.
if (intermediateGuard.compareAndSet(false, true)) {
for (var i = 0; i < validActions.size(); i++) {
var newChoices = Arrays.copyOf(choices, choices.length + 1);
newChoices[newChoices.length - 1] = i;
intermediateNodes.add(new IntermediateNode(newChoices));
}
}
// We can throw this route away.
return validActions.get(0);
} else {
return validActions.get(choices[choiceIndex]);
}
}));
if (isInterrupted()) {
return;
}
intermediateMutateContext.performAction(playerId, action);
if (isInterrupted()) {
return;
}
// Check if processing this intermediate queued more intermediates.
if (intermediateNodes.size() > queueSize) {
// We can toss this result away, we'll have to process again.
continue;
}
// If it didn't, then the intermediate is the last intermediate on a path from real node to real node. Queue a
// real node onto the context stack. Reconstruct the path by following the predecessors of the intermediates until
// we reach a real node.
var actions = new GameAction[1 + choices.length];
actions[0] = action;
for (var i = 0; i < choices.length; i++) {
actions[i + 1] = new IntermediateAction(choices[i]);
}
contextStack.add(new Node(intermediateMutateContext, node, depth + 1, actions));
}
} finally {
DEPTH.get().decrementAndGet();
}
}
/**
* Pre-processes a game state before running a simulation.
*
* @param playerId
* @param thisContext
*/
private static void preProcess(int playerId, GameContext thisContext) {
// Preprocess: Don't simulate the opposing player's secrets
var opponent = thisContext.getOpponent(thisContext.getPlayer(playerId));
thisContext.getLogic().removeSecrets(opponent);
}
/**
* Post-processes a game state for scoring.
* <p>
* Currently, this method triggers turn start effects on both sides of the battlefield.
*
* @param playerId
* @param context
*/
protected void postProcess(int playerId, GameContext context) {
if (isTriggerStartTurns()
&& !context.updateAndGetGameOver()
&& context.getTurnState() == TurnState.TURN_ENDED) {
var player = context.getPlayer(playerId);
var opponent = context.getOpponent(player);
// Make sure that friendly start turns don't accidentally wind up killing the opponent
var opponentHp = opponent.getHero().getHp();
for (var trigger : new ArrayList<>(context.getTriggers())) {
if (trigger instanceof Enchantment && !(trigger instanceof Aura) && !trigger.isExpired()) {
var enchantment = (Enchantment) trigger;
if (enchantment.getTriggers().stream().anyMatch(e -> e.getClass().equals(TurnStartTrigger.class)
|| (e.getClass().equals(TurnEndTrigger.class) && enchantment.getOwner() == opponent.getId()))) {
// Correctly set the trigger stacks
context.getTriggerHostStack().push(trigger.getHostReference());
context.getLogic().castSpell(trigger.getOwner(), enchantment.getSpell(), trigger.getHostReference(), EntityReference.NONE, TargetSelection.NONE, true, null);
context.getTriggerHostStack().pop();
}
}
}
// If a turn start trigger killed the opponent, it probably should not have had, and should not count as a
// game-ending effect.
if (opponent.getHero().getHp() <= 0) {
opponent.getHero().setHp(opponentHp);
}
if (opponent.getHero().isDestroyed()) {
opponent.getHero().getAttributes().remove(Attribute.DESTROYED);
}
context.getLogic().endOfSequence();
}
}
public void setIndexPlan(Deque<Integer> indexPlan) {
this.indexPlan = indexPlan;
}
/**
* The index plan is a sequence of indices into {@link GameContext#getValidActions()} that the bot can perform to go
* towards a previously-computed highest-scoring game state. It is essentially a cache of a prior computation of the
* best possible {@link #getMaxDepth()} number of actions.
* <p>
* For example, this code will "follow the plan" that was computed as a side effect of running