-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_3dunet.py
301 lines (242 loc) · 11.9 KB
/
train_3dunet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import argparse
import os
import pathlib
import time
import gc
import numpy as np
import pandas as pd
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
from torch.autograd import Variable
from torch.cuda.amp import GradScaler
from torch.utils.tensorboard import SummaryWriter
import model
from dataset.batch_utils import determinist_collate
from dataset.brats_train import get_datasets
from learning_rate.poly_lr import poly_lr
from loss import EDiceLoss
from loss.adversarial_loss_gen import adv_loss_critic_v1
from loss.vat import vat_loss
from model import get_norm_layer
from model.critic import Discriminator
from utils import AverageMeter, ProgressMeter, save_checkpoint, reload_ckpt_bis, \
count_parameters, save_metrics, save_args
parser = argparse.ArgumentParser(description='BRATS 2021 Training')
parser.add_argument('-a', '--arch', metavar='ARCH', default='Unet', help='model architecture (default: Unet)')
parser.add_argument('--width', default=32, help='base number of features for Unet (x2 per downsampling)', type=int)
# DO not use data_aug argument this argument!!
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2).')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=1, type=int, metavar='N', help='mini-batch size (default: 1)')
parser.add_argument('--lr', '--learning-rate', default=2e-4, type=float, metavar='LR', help='initial learning rate',
dest='lr')
parser.add_argument('--wd', '--weight-decay', default=1e-03, type=float,
metavar='W', help='weight decay (default: 0)',
dest='weight_decay')
# Warning: untested option!!
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint. Warning: untested option')
parser.add_argument('--devices', default='0', type=str, help='Set the CUDA_VISIBLE_DEVICES env var from this string')
parser.add_argument('--seed', default=16111990, help="seed for train/val split")
parser.add_argument('--warmup', default=5, type=int, metavar='N', help='number of warmup epochs')
parser.add_argument('--disable-cos', action='store_true', help='disable cosine lr schedule')
parser.add_argument('--warm', default=3, type=int, help="number of warming up epochs")
parser.add_argument('--val', default=1, type=int, help="how often to perform validation step")
parser.add_argument('--fold', default=0, type=int, help="Split number (0 to 4)")
parser.add_argument('--norm_layer', default='inorm')
parser.add_argument('--optim', choices=['adam', 'sgd', 'adamw'], default='adam')
parser.add_argument('--com', help="add a comment to this run!")
parser.add_argument('--dropout', type=float, help="amount of dropout to use", default=0.)
parser.add_argument('--warm_restart', action='store_true', help='use scheduler warm restarts with period of 30')
parser.add_argument('--full', action='store_true', help='Fit the network on the full training set')
parser.add_argument('--lambda_adv', type=float, default=0.3, help='scalar constant adversarial loss')
parser.add_argument('--lambda_vat', type=float, default=0.2, help='scalar constant vat loss')
def main(args):
# setup
ngpus = torch.cuda.device_count()
print(f"Working with {ngpus} GPUs")
args.exp_name = "brats_2021".format(args.lambda_adv, args.lambda_vat)
args.save_folder = pathlib.Path(f"./runs/{args.exp_name}/model_1")
args.save_folder.mkdir(parents=True, exist_ok=True)
args.seg_folder = args.save_folder / "segs"
args.seg_folder.mkdir(parents=True, exist_ok=True)
args.save_folder = args.save_folder.resolve()
save_args(args)
t_writer_1 = SummaryWriter(str(args.save_folder))
# Create model
print(f"Creating {args.arch}")
model_maker = getattr(model, args.arch)
model_1 = model_maker(
4, 3,
width=args.width, norm_layer=get_norm_layer(args.norm_layer), dropout=args.dropout)
print(f"total number of trainable parameters {count_parameters(model_1)}")
print(f"scalar constant agreement loss {args.lambda_vat}")
print(f"scalar constant adversarial loss {args.lambda_adv}")
model_1 = model_1.cuda()
model_file = args.save_folder / "model.txt"
with model_file.open("w") as f:
print(model_1, file=f)
criterion = EDiceLoss().cuda()
metric = criterion.metric
print(metric)
params = model_1.parameters()
if args.optim == "adam":
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=0)
elif args.optim == "sgd":
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=0.99, nesterov=True)
elif args.optim == "adamw":
print(f"weight decay argument will not be used. Default is 11e-2")
optimizer = torch.optim.AdamW(params, lr=args.lr)
full_train_dataset, l_val_dataset, bench_dataset = get_datasets(args.seed,fold_number=args.fold)
train_loader = torch.utils.data.DataLoader(full_train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
val_loader = torch.utils.data.DataLoader(l_val_dataset, batch_size=1, shuffle=False,
pin_memory=True, num_workers=args.workers, collate_fn=determinist_collate)
print("Val dataset number of batch:", len(val_loader))
print("Full Labeled Train dataset number of batch:", len(train_loader))
# create grad scaler
scaler = GradScaler()
# Actual Train loop
best_1 = np.inf
patients_perf = []
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
print("start training now!")
for epoch in range(args.epochs):
try:
# do_epoch for one epoch
ts = time.perf_counter()
# Setup
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses_ = AverageMeter('Loss', ':.4e')
mode = "train" if model_1.training else "val"
batch_per_epoch = len(train_loader)
progress = ProgressMeter(
batch_per_epoch,
[batch_time, data_time, losses_],
prefix=f"{mode} Epoch: [{epoch}]")
end = time.perf_counter()
metrics = []
optimizer.param_groups[0]['lr'] = poly_lr(epoch, args.epochs, args.lr, 0.9)
for i, batch in enumerate(zip(train_loader)):
torch.cuda.empty_cache()
# measure data loading time
data_time.update(time.perf_counter() - end)
inputs_S1, labels_S1 = batch[0]["image"].float(), batch[0]["label"].float()
inputs_S1, labels_S1 = Variable(inputs_S1), Variable(labels_S1)
inputs_S1, labels_S1 = inputs_S1.cuda(), labels_S1.cuda()
optimizer.zero_grad()
segs_S1 = model_1(inputs_S1)
loss_ = criterion(segs_S1, labels_S1)
t_writer_1.add_scalar(f"Loss/{mode}{''}",
loss_.item(),
global_step=batch_per_epoch * epoch + i)
# measure accuracy and record loss_
if not np.isnan(loss_.item()):
losses_.update(loss_.item())
else:
print("NaN in model loss!!")
# compute gradient and do SGD step
scaler.scale(loss_).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
t_writer_1.add_scalar("lr", optimizer.param_groups[0]['lr'], global_step=epoch * batch_per_epoch + i)
# measure elapsed time
batch_time.update(time.perf_counter() - end)
end = time.perf_counter()
# Display progress
progress.display(i)
t_writer_1.add_scalar(f"SummaryLoss/train", losses_.avg, epoch)
te = time.perf_counter()
print(f"Train Epoch done in {te - ts} s")
torch.cuda.empty_cache()
# Validate at the end of epoch every val step
if (epoch + 1) % args.val == 0:
validation_loss_1 = step(val_loader, model_1, criterion, metric, epoch, t_writer_1,
save_folder=args.save_folder,
patients_perf=patients_perf)
if scheduler is not None:
scheduler.step(validation_loss_1)
t_writer_1.add_scalar(f"SummaryLoss", validation_loss_1, epoch)
if validation_loss_1 < best_1:
best_1 = validation_loss_1
model_dict = model_1.state_dict()
save_checkpoint(
dict(
epoch=epoch, arch=args.arch,
state_dict=model_dict,
optimizer=optimizer.state_dict(),
scheduler=scheduler.state_dict(),
),
save_folder=args.save_folder, )
ts = time.perf_counter()
print(f"Val epoch done in {ts - te} s")
torch.cuda.empty_cache()
except KeyboardInterrupt:
print("Stopping training loop, doing benchmark")
break
try:
df_individual_perf = pd.DataFrame.from_records(patients_perf)
print(df_individual_perf)
df_individual_perf.to_csv(f'{str(args.save_folder)}/patients_indiv_perf.csv')
reload_ckpt_bis(f'{str(args.save_folder)}/model_best.pth.tar', model_1)
torch.cuda.empty_cache()
except KeyboardInterrupt:
print("Stopping right now!")
def step(data_loader, model, criterion: EDiceLoss, metric, epoch, writer, scaler=None,
scheduler=None, save_folder=None, patients_perf=None):
# Setup
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
mode = "val"
batch_per_epoch = len(data_loader)
progress = ProgressMeter(
batch_per_epoch,
[batch_time, data_time, losses],
prefix=f"{mode} Epoch: [{epoch}]")
end = time.perf_counter()
metrics = []
for i, batch in enumerate(data_loader):
# measure data loading time
data_time.update(time.perf_counter() - end)
targets = batch["label"].float()
targets = targets.cuda()
inputs = batch["image"].float()
patient_id = batch["patient_id"]
inputs = inputs.cuda()
model.eval()
with torch.no_grad():
segs = model(inputs)
loss_ = criterion(segs, targets)
if patients_perf is not None:
patients_perf.append(
dict(id=patient_id[0], epoch=epoch, split=mode, loss=loss_.item())
)
writer.add_scalar(f"Loss/{mode}{''}",
loss_.item(),
global_step=batch_per_epoch * epoch + i)
# measure accuracy and record loss_
if not np.isnan(loss_.item()):
losses.update(loss_.item())
else:
print("NaN in model loss!!")
metric_ = metric(segs, targets)
metrics.extend(metric_)
# measure elapsed time
batch_time.update(time.perf_counter() - end)
end = time.perf_counter()
# Display progress
progress.display(i)
save_metrics(epoch, metrics, writer, epoch, False, save_folder)
writer.add_scalar(f"SummaryLoss/val", losses.avg, epoch)
return losses.avg
if __name__ == '__main__':
arguments = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = arguments.devices
main(arguments)