-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathsolver.py
311 lines (272 loc) · 15.5 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# ################### The SolverThread class solves implements the two phase algorithm #################################
import face
import threading as thr
import cubie
import symmetries as sy
import coord
from enums import Move
import moves as mv
import pruning as pr
import time
from defs import N_MOVE
class SolverThread(thr.Thread):
def __init__(self, cb_cube, rot, inv, ret_length, timeout, start_time, solutions, terminated, shortest_length):
"""
:param cb_cube: The cube to be solved in CubieCube representation
:param rot: Rotates the cube 120° * rot along the long diagonal before applying the two-phase-algorithm
:param inv: 0: Do not invert the cube . 1: Invert the cube before applying the two-phase-algorithm
:param ret_length: If a solution with length <= ret_length is found the search stops.
The most efficient way to solve a cube is to start six threads in parallel with rot = 0, 1 and 2 and
inv = 0, 1. The first thread which finds a solutions sets the terminated flag which signals all other threads
to teminate. On average this solves a cube about 12 times faster than solving one cube with a single thread.
And this despite of Pythons GlobalInterpreterLock GIL.
:param timeout: Essentially the maximal search time in seconds. Essentially because the search does not return
before at least one solution has been found.
:param start_time: The time the search started.
:param solutions: An array with the found solutions found by the six parallel threads
:param terminated: An event shared by the six threads to signal a termination request
:param shortest_length: The length of the shortes solutions in the solution array
"""
thr.Thread.__init__(self)
self.cb_cube = cb_cube # CubieCube
self.co_cube = None # CoordCube initialized in function run
self.rot = rot
self.inv = inv
self.sofar_phase1 = None
self.sofar_phase2 = None
self.phase2_done = False
self.lock = thr.Lock()
self.ret_length = ret_length
self.timeout = timeout
self.start_time = start_time
self.cornersave = 0
# these variables are shared by the six threads, initialized in function solve
self.solutions = solutions
self.terminated = terminated
self.shortest_length = shortest_length
def search_phase2(self, corners, ud_edges, slice_sorted, dist, togo_phase2):
# ##############################################################################################################
if self.terminated.is_set() or self.phase2_done:
return
################################################################################################################
if togo_phase2 == 0 and slice_sorted == 0:
self.lock.acquire() # phase 2 solved, store solution
man = self.sofar_phase1 + self.sofar_phase2
if len(self.solutions) == 0 or (len(self.solutions[-1]) > len(man)):
if self.inv == 1: # we solved the inverse cube
man = list(reversed(man))
man[:] = [Move((m // 3) * 3 + (2 - m % 3)) for m in man] # R1->R3, R2->R2, R3->R1 etc.
man[:] = [Move(sy.conj_move[N_MOVE * 16 * self.rot + m]) for m in man]
self.solutions.append(man)
self.shortest_length[0] = len(man)
if self.shortest_length[0] <= self.ret_length: # we have reached the target length
self.terminated.set()
self.lock.release()
self.phase2_done = True
else:
for m in Move:
if m in [Move.R1, Move.R3, Move.F1, Move.F3,
Move.L1, Move.L3, Move.B1, Move.B3]:
continue
if len(self.sofar_phase2) > 0:
diff = self.sofar_phase2[-1] // 3 - m // 3
if diff in [0, 3]: # successive moves: on same face or on same axis with wrong order
continue
else:
if len(self.sofar_phase1) > 0:
diff = self.sofar_phase1[-1] // 3 - m // 3
if diff in [0, 3]: # successive moves: on same face or on same axis with wrong order
continue
corners_new = mv.corners_move[18 * corners + m]
ud_edges_new = mv.ud_edges_move[18 * ud_edges + m]
slice_sorted_new = mv.slice_sorted_move[18 * slice_sorted + m]
classidx = sy.corner_classidx[corners_new]
sym = sy.corner_sym[corners_new]
dist_new_mod3 = pr.get_corners_ud_edges_depth3(
40320 * classidx + sy.ud_edges_conj[(ud_edges_new << 4) + sym])
dist_new = pr.distance[3 * dist + dist_new_mod3]
if max(dist_new, pr.cornslice_depth[24 * corners_new + slice_sorted_new]) >= togo_phase2:
continue # impossible to reach solved cube in togo_phase2 - 1 moves
self.sofar_phase2.append(m)
self.search_phase2(corners_new, ud_edges_new, slice_sorted_new, dist_new, togo_phase2 - 1)
self.sofar_phase2.pop(-1)
def search(self, flip, twist, slice_sorted, dist, togo_phase1):
# ##############################################################################################################
if self.terminated.is_set():
return
################################################################################################################
if togo_phase1 == 0: # phase 1 solved
if time.monotonic() > self.start_time + self.timeout and len(self.solutions) > 0:
self.terminated.set()
# compute initial phase 2 coordinates
if self.sofar_phase1: # check if list is not empty
m = self.sofar_phase1[-1]
else:
m = Move.U1 # value is irrelevant here, no phase 1 moves
if m in [Move.R3, Move.F3, Move.L3, Move.B3]: # phase 1 solution come in pairs
corners = mv.corners_move[18 * self.cornersave + m - 1] # apply R2, F2, L2 ord B2 on last ph1 solution
else:
corners = self.co_cube.corners
for m in self.sofar_phase1: # get current corner configuration
corners = mv.corners_move[18 * corners + m]
self.cornersave = corners
# new solution must be shorter and we do not use phase 2 maneuvers with length > 11 - 1 = 10
togo2_limit = min(self.shortest_length[0] - len(self.sofar_phase1), 11)
if pr.cornslice_depth[24 * corners + slice_sorted] >= togo2_limit: # precheck speeds up the computation
return
u_edges = self.co_cube.u_edges
d_edges = self.co_cube.d_edges
for m in self.sofar_phase1:
u_edges = mv.u_edges_move[18 * u_edges + m]
d_edges = mv.d_edges_move[18 * d_edges + m]
ud_edges = coord.u_edges_plus_d_edges_to_ud_edges[24 * u_edges + d_edges % 24]
dist2 = self.co_cube.get_depth_phase2(corners, ud_edges)
for togo2 in range(dist2, togo2_limit): # do not use more than togo2_limit - 1 moves in phase 2
self.sofar_phase2 = []
self.phase2_done = False
self.search_phase2(corners, ud_edges, slice_sorted, dist2, togo2)
if self.phase2_done: # solution already found
break
else:
for m in Move:
# dist = 0 means that we are already are in the subgroup H. If there are less than 5 moves left
# this forces all remaining moves to be phase 2 moves. So we can forbid these at the end of phase 1
# and generate these moves in phase 2.
if dist == 0 and togo_phase1 < 5 and m in [Move.U1, Move.U2, Move.U3, Move.R2,
Move.F2, Move.D1, Move.D2, Move.D3,
Move.L2, Move.B2]:
continue
if len(self.sofar_phase1) > 0:
diff = self.sofar_phase1[-1] // 3 - m // 3
if diff in [0, 3]: # successive moves: on same face or on same axis with wrong order
continue
flip_new = mv.flip_move[18 * flip + m] # N_MOVE = 18
twist_new = mv.twist_move[18 * twist + m]
slice_sorted_new = mv.slice_sorted_move[18 * slice_sorted + m]
flipslice = 2048 * (slice_sorted_new // 24) + flip_new # N_FLIP * (slice_sorted // N_PERM_4) + flip
classidx = sy.flipslice_classidx[flipslice]
sym = sy.flipslice_sym[flipslice]
dist_new_mod3 = pr.get_flipslice_twist_depth3(2187 * classidx + sy.twist_conj[(twist_new << 4) + sym])
dist_new = pr.distance[3 * dist + dist_new_mod3]
if dist_new >= togo_phase1: # impossible to reach subgroup H in togo_phase1 - 1 moves
continue
self.sofar_phase1.append(m)
self.search(flip_new, twist_new, slice_sorted_new, dist_new, togo_phase1 - 1)
self.sofar_phase1.pop(-1)
def run(self):
cb = None
if self.rot == 0: # no rotation
cb = cubie.CubieCube(self.cb_cube.cp, self.cb_cube.co, self.cb_cube.ep, self.cb_cube.eo)
elif self.rot == 1: # conjugation by 120° rotation
cb = cubie.CubieCube(sy.symCube[32].cp, sy.symCube[32].co, sy.symCube[32].ep, sy.symCube[32].eo)
cb.multiply(self.cb_cube)
cb.multiply(sy.symCube[16])
elif self.rot == 2: # conjugation by 240° rotation
cb = cubie.CubieCube(sy.symCube[16].cp, sy.symCube[16].co, sy.symCube[16].ep, sy.symCube[16].eo)
cb.multiply(self.cb_cube)
cb.multiply(sy.symCube[32])
if self.inv == 1: # invert cube
tmp = cubie.CubieCube()
cb.inv_cubie_cube(tmp)
cb = tmp
self.co_cube = coord.CoordCube(cb) # the rotated/inverted cube in coordinate representation
dist = self.co_cube.get_depth_phase1()
for togo1 in range(dist, 20): # iterative deepening, solution has at least dist moves
self.sofar_phase1 = []
self.search(self.co_cube.flip, self.co_cube.twist, self.co_cube.slice_sorted, dist, togo1)
# ################################End class SolverThread################################################################
def solve(cubestring, max_length=20, timeout=3):
"""Solve a cube defined by its cube definition string.
:param cubestring: The format of the string is given in the Facelet class defined in the file enums.py
:param max_length: The function will return if a maneuver of length <= max_length has been found
:param timeout: If the function times out, the best solution found so far is returned. If there has not been found
any solution yet the computation continues until a first solution appears.
"""
fc = face.FaceCube()
s = fc.from_string(cubestring)
if s != cubie.CUBE_OK:
return s # no valid cubestring, gives invalid facelet cube
cc = fc.to_cubie_cube()
s = cc.verify()
if s != cubie.CUBE_OK:
return s # no valid facelet cube, gives invalid cubie cube
my_threads = []
s_time = time.monotonic()
# these mutable variables are modidified by all six threads
s_length = [999]
solutions = []
terminated = thr.Event()
terminated.clear()
syms = cc.symmetries()
if len(list({16, 20, 24, 28} & set(syms))) > 0: # we have some rotational symmetry along a long diagonal
tr = [0, 3] # so we search only one direction and the inverse
else:
tr = range(6) # This means search in 3 directions + inverse cube
if len(list(set(range(48, 96)) & set(syms))) > 0: # we have some antisymmetry so we do not search the inverses
tr = list(filter(lambda x: x < 3, tr))
for i in tr:
th = SolverThread(cc, i % 3, i // 3, max_length, timeout, s_time, solutions, terminated, [999])
my_threads.append(th)
th.start()
for t in my_threads:
t.join() # wait until all threads have finished
s = ''
if len(solutions) > 0:
for m in solutions[-1]: # the last solution is the shortest
s += m.name + ' '
return s + '(' + str(len(s) // 3) + 'f)'
########################################################################################################################
def solveto(cubestring, goalstring, max_length=20, timeout=3):
"""Solve a cube defined by cubstring to a position defined by goalstring.
:param cubestring: The format of the string is given in the Facelet class defined in the file enums.py
:param goalstring: The format of the string is given in the Facelet class defined in the file enums.py
:param max_length: The function will return if a maneuver of length <= max_length has been found
:param timeout: If the function times out, the best solution found so far is returned. If there has not been found
any solution yet the computation continues until a first solution appears.
"""
fc0 = face.FaceCube()
fcg = face.FaceCube()
s = fc0.from_string(cubestring)
if s != cubie.CUBE_OK:
return 'first cube ' + s # no valid cubestring, gives invalid facelet cube
s = fcg.from_string(goalstring)
if s != cubie.CUBE_OK:
return 'second cube ' + s # no valid goalstring, gives invalid facelet cube
cc0 = fc0.to_cubie_cube()
s = cc0.verify()
if s != cubie.CUBE_OK:
return 'first cube ' + s # no valid facelet cube, gives invalid cubie cube
ccg = fcg.to_cubie_cube()
s = ccg.verify()
if s != cubie.CUBE_OK:
return 'second cube ' + s # no valid facelet cube, gives invalid cubie cube
# cc0 * S = ccg <=> (ccg^-1 * cc0) * S = Id
cc = cubie.CubieCube()
ccg.inv_cubie_cube(cc)
cc.multiply(cc0)
my_threads = []
s_time = time.monotonic()
# these mutable variables are modidified by all six threads
shortest_length = [999]
solutions = []
terminated = thr.Event()
terminated.clear()
syms = cc.symmetries()
if len(list({16, 20, 24, 28} & set(syms))) > 0: # we have some rotational symmetry along a long diagonal
tr = [0, 3] # so we search only one direction and the inverse
else:
tr = range(6) # This means search in 3 directions + inverse cube
if len(list(set(range(48, 96)) & set(syms))) > 0: # we have some antisymmetry so we do not search the inverses
tr = list(filter(lambda x: x < 3, tr))
for i in tr:
th = SolverThread(cc, i % 3, i // 3, max_length, timeout, s_time, solutions, terminated, shortest_length)
my_threads.append(th)
th.start()
for t in my_threads:
t.join() # wait until all threads have finished
s = ''
if len(solutions) > 0:
for m in solutions[-1]: # the last solution is the shortest
s += m.name + ' '
return s + '(' + str(len(s) // 3) + 'f)'
########################################################################################################################