-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmodel.py
146 lines (127 loc) · 5.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import tensorflow as tf
from utils import check_and_create_dir, print_train_steps, get_batch, extract_image_path, extract_n_normalize_image
import os
import numpy as np
import cv2
from scipy.misc import imsave
class AELikeModel:
"""
AE-like Model with Pooling as a Size-changing Factor
"""
def __init__(self, image_size, alpha, verbose=False, trained_model=None):
tf.reset_default_graph()
self.image_size = image_size
self.alpha = alpha
self.verbose = verbose
self.X = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 1])
self.Y_clear = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 1])
n_filters = [16, 32, 64]
filter_sizes = [5, 5, 5]
n_input = 1
Ws = []
shapes = []
current_input = self.X
for layer_i, n_output in enumerate(n_filters):
with tf.variable_scope("encoder/layer/{}".format(layer_i)):
shapes.append(current_input.get_shape().as_list())
W = tf.get_variable(
name='W',
shape=[
filter_sizes[layer_i],
filter_sizes[layer_i],
n_input,
n_output],
initializer=tf.random_normal_initializer(mean=0.0, stddev=0.02))
h = tf.nn.conv2d(current_input, W,
strides=[1, 1, 1, 1], padding='SAME')
conv = tf.nn.relu(h)
current_input = tf.nn.max_pool(conv, [1,2,2,1], [1,2,2,1], padding='SAME')
Ws.append(W)
n_input = n_output
Ws.reverse()
shapes.reverse()
n_filters.reverse()
n_filters = n_filters[1:] + [1]
for layer_i, shape in enumerate(shapes):
with tf.variable_scope("decoder/layer/{}".format(layer_i)):
W = Ws[layer_i]
h = tf.nn.conv2d_transpose(current_input, W,
tf.stack([tf.shape(self.X)[0], shape[1], shape[2], shape[3]]),
strides=[1, 2, 2, 1], padding='SAME')
current_input = tf.nn.relu(h)
self.Y = current_input
# MSE
self.mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(self.Y_clear, self.Y), 1))
# MS SSIM
self.ssim = tf.reduce_mean(1 - tf.image.ssim_multiscale(self.Y_clear, self.Y, 1))
# Mixed cost
self.cost = self.alpha*self.ssim + (1 - self.alpha)*self.mse
# Using Adam for optimizer
self.learning_rate = tf.Variable(initial_value=1e-2, trainable=False, dtype=tf.float32)
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.cost)
self.batch_size = tf.Variable(initial_value=64, trainable=False, dtype=tf.int32)
self.trained_model = trained_model
def init_session(self):
"""
Init session
"""
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
saver = tf.train.Saver()
coord = tf.train.Coordinator()
_ = tf.train.start_queue_runners(sess=sess, coord=coord)
if not self.trained_model is None:
saver.restore(sess, self.trained_model)
return (sess,saver)
def train(self, x_path_dir, y_path_dir, epochs, train_steps, learning_rate, epochs_to_reduce_lr, reduce_lr, output_model, output_log, b_size):
"""
Train data
"""
# Check output directory
check_and_create_dir(output_model)
# Load data
x_filenames = extract_image_path([x_path_dir])
y_filenames = extract_image_path([y_path_dir])
# Scalar
tf.summary.scalar('Learning rate', self.learning_rate)
tf.summary.scalar('MSE', self.mse)
tf.summary.scalar('MS SSIM', self.ssim)
tf.summary.scalar('Loss', self.cost)
tf.summary.image('BSE', self.Y)
tf.summary.image('Ground truth', self.Y_clear)
merged = tf.summary.merge_all()
sess, saver = self.init_session()
writer = tf.summary.FileWriter(output_log, sess.graph)
l_rate = learning_rate
try:
for epoch_i in range(epochs):
if ((epoch_i + 1) % epochs_to_reduce_lr) == 0:
l_rate = l_rate * (1 - reduce_lr)
if self.verbose:
print("\n------------ Epoch : ",epoch_i+1)
print("Current learning rate {}".format(l_rate))
# Training steps
for i in range(train_steps):
if self.verbose:
print_train_steps(i+1, train_steps)
x_batch, y_batch = get_batch(b_size, self.image_size, x_filenames, y_filenames)
sess.run(self.optimizer, feed_dict={ self.X: x_batch, self.Y_clear: y_batch, self.learning_rate: l_rate, self.batch_size: b_size })
if i % 50 == 0:
summary = sess.run(merged, {self.X: x_batch, self.Y_clear: y_batch, self.learning_rate: l_rate, self.batch_size: b_size})
writer.add_summary(summary, i+ epoch_i*train_steps)
if self.verbose:
print("\nSave model to {}".format(output_model))
saver.save(sess, output_model, global_step=(epoch_i+1)*train_steps)
except KeyboardInterrupt:
saver.save(sess, output_model)
def test(self, input_image, output_image):
'''
Test image
'''
img = extract_n_normalize_image(input_image)
x_image = np.reshape(np.array([img]), (1, self.image_size, self.image_size, 1))
sess, _ = self.init_session()
y_image = sess.run(self.Y, feed_dict={self.X: x_image})
encoded_image = y_image.reshape((self.image_size, self.image_size))
imsave(output_image, encoded_image)