-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
308 lines (252 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
LICENSE
This file is part of Speech recognition with CTC in Keras.
The project is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.
The project is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this project.
If not, see http://www.gnu.org/licenses/.
"""
import argparse
from datetime import datetime
import keras.backend as K
import tensorflow as tf
from keras import models
from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping
from keras.optimizers import Adam
from keras.utils import multi_gpu_model
import models
from DataGenerator import DataGenerator
from LossCallback import LossCallback
from data import combine_all_wavs_and_trans_from_csvs
def main(args):
# Paths to .csv files
path = "data_dir/librivox-train-clean-360.csv"
path_validation = "data_dir/librivox-dev-clean.csv"
path_test = "data_dir/librivox-test-clean.csv"
# Create dataframes
print "\nReading training data:"
_, input_dataframe = combine_all_wavs_and_trans_from_csvs(path)
print "\nReading validation data: "
_, validation_df = combine_all_wavs_and_trans_from_csvs(path_validation)
print "\nReading test data: "
_, test_df = combine_all_wavs_and_trans_from_csvs(path_test)
# Training params:
batch_size = args.batch_size
input_epoch_length = args.epoch_len
epochs = args.epochs
learning_rate = args.lr
log_file = args.log_file
# Multi GPU or single GPU / CPU training
num_gpu = args.num_gpu
# Preprocessing params
feature_type = args.feature_type
mfcc_features = args.mfccs
n_mels = args.mels
# Model params
model_type = args.model_type
units = args.units
dropout = args.dropout
n_layers = args.layers
# Saving and loading params
model_save = args.model_save
checkpoint = args.checkpoint
model_load = args.model_load
load_multi = args.load_multi
# Additional settings for training
save_best = args.save_best_val # Save model with best val_loss (on path "model_save" + "_best")
shuffle = args.shuffle_indexes
reduce_lr = args.reduce_lr # Reduce learning rate on val_loss plateau
early_stopping = args.early_stopping # Stop training early if val_loss stops improving
frequency = 16 # Sampling rate of data in khz (LibriSpeech is 16khz)
cudnnlstm = False
# Data generation parameters
data_params = {'feature_type': feature_type,
'batch_size': batch_size,
'frame_length': 20 * frequency,
'hop_length': 10 * frequency,
'mfcc_features': mfcc_features,
'n_mels': n_mels,
'epoch_length': input_epoch_length,
'shuffle': shuffle
}
# Data generators for training, validation and testing data
training_generator = DataGenerator(input_dataframe, **data_params)
validation_generator = DataGenerator(validation_df, **data_params)
test_generator = DataGenerator(test_df, **data_params)
# Model input shape
if feature_type == 'mfcc':
input_dim = mfcc_features
else:
input_dim = n_mels
output_dim = 29 # Output dim: features to predict + 1 for the CTC blank prediction
# Optimization algorithm used to update network weights
optimizer = Adam(lr=learning_rate, epsilon=1e-8, clipnorm=2.0)
# Dummy loss-function for compiling model, actual CTC loss-function defined as a lambda layer in model
loss = {'ctc': lambda y_true, y_pred: y_pred}
# Print training data at the beginning of training
calc_epoch_length = training_generator.__len__()
print "\n\nModel and training parameters: "
print "Starting time: ", datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print " - epochs: ", epochs, "\n - batch size: ", batch_size, \
"\n - input epoch length: ", input_epoch_length, "\n - network epoch length: ", calc_epoch_length, \
"\n - training on ", calc_epoch_length * batch_size, " files", "\n - learning rate: ", learning_rate, \
"\n - hidden units: ", units, "\n - mfcc features: ", mfcc_features, "\n - dropout: ", dropout, "\n"
try:
# Load previous model or create new. With device cpu ensures that the model is created/loaded on the cpu
if model_load:
with tf.device('/cpu:0'):
# When loading custom objects, Keras needs to know where to find them.
# The CTC lambda is a dummy function
custom_objects = {'clipped_relu': models.clipped_relu,
'<lambda>': lambda y_true, y_pred: y_pred}
# When loading a parallel model saved *while* running on multiple GPUs, use load_multi
if load_multi:
model = models.load_model(model_load, custom_objects=custom_objects)
model = model.layers[-2]
print "Loaded existing model at: ", model_load
# Load single GPU/CPU model or model saved *after* finished training
else:
model = models.load_model(model_load, custom_objects=custom_objects)
print "Loaded existing model at: ", model_load
else:
with tf.device('/cpu:0'):
# Create new model
model = models.model(model_type=model_type, units=units, input_dim=input_dim,
output_dim=output_dim, dropout=dropout, cudnn=cudnnlstm, n_layers=n_layers)
print "Creating new model: ", model_type
# Loss callback parameters
loss_callback_params = {'validation_gen': validation_generator,
'test_gen': test_generator,
'checkpoint': checkpoint,
'path_to_save': model_save,
'log_file_path': log_file
}
# Model training parameters
model_train_params = {'generator': training_generator,
'epochs': epochs,
'verbose': 2,
'validation_data': validation_generator,
'workers': 1,
'shuffle': shuffle}
# Optional callbacks for added functionality
# Reduces learning rate when val_loss stagnates.
if reduce_lr:
print "Reducing learning rate on plateau"
reduce_lr_cb = ReduceLROnPlateau(factor=0.2, patience=5, verbose=0, epsilon=0.1, min_lr=0.0000001)
callbacks = [reduce_lr_cb]
else:
callbacks = []
# Stops the model early if the val_loss isn't improving
if early_stopping:
es_cb = EarlyStopping(min_delta=0, patience=5, verbose=0, mode='auto')
callbacks.append(es_cb)
# Saves the model if val_loss is improved at "model_save" + "_best"
if save_best:
save_best = model_save + str('_best')
mcp_cb = ModelCheckpoint(save_best, verbose=1, save_best_only=True, period=1)
callbacks.append(mcp_cb)
# Train with parallel model on 2 or more GPUs, must be even number
if num_gpu > 1:
if num_gpu % 2 == 0:
# Compile parallel model for training on GPUs > 1
parallel_model = multi_gpu_model(model, gpus=num_gpu)
parallel_model.compile(loss=loss, optimizer=optimizer)
# Print model summary
model.summary()
# Creates a test function that takes sound input and outputs predictions
# Used to calculate WER while training the network
input_data = model.get_layer('the_input').input
y_pred = model.get_layer('ctc').input[0]
test_func = K.function([input_data], [y_pred])
# The loss callback function that calculates WER while training
loss_cb = LossCallback(test_func=test_func, model=model, **loss_callback_params)
callbacks.append(loss_cb)
# Run training
parallel_model.fit_generator(callbacks=callbacks, **model_train_params)
else:
raise ValueError('Number of GPUs must be an even number')
# Train with CPU or single GPU
elif num_gpu == 1 or num_gpu == 0:
# Compile model for training on GPUs < 2
model.compile(loss=loss, optimizer=optimizer)
# Print model summary
model.summary()
# Creates a test function that takes preprocessed sound input and outputs predictions
# Used to calculate WER while training the network
input_data = model.get_layer('the_input').input
y_pred = model.get_layer('ctc').input[0]
test_func = K.function([input_data], [y_pred])
# The loss callback function that calculates WER while training
loss_cb = LossCallback(test_func=test_func, model=model, **loss_callback_params)
callbacks.append(loss_cb)
# Run training
model.fit_generator(callbacks=callbacks, **model_train_params)
else:
raise ValueError('Not a valid number of GPUs: ', num_gpu)
if args.model_save:
model.save(model_save)
print "Model saved: ", model_save
except (Exception, ArithmeticError) as e:
template = "An exception of type {0} occurred. Arguments:\n{1!r}"
message = template.format(type(e).__name__, e.args)
print message
finally:
# Clear memory
K.clear_session()
print "Ending time: ", datetime.now().strftime('%Y-%m-%d %H:%M:%S')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Training params:
parser.add_argument('--batch_size', type=int, default=32,
help='Number of files in one batch.')
parser.add_argument('--epoch_len', type=int, default=32,
help='Number of batches per epoch. 0 trains on full dataset.')
parser.add_argument('--epochs', type=int, default=10,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.0001,
help='Learning rate.')
parser.add_argument('--log_file', type=str, default="log",
help='Path to log stats to .csv file.')
# Multi GPU or single GPU / CPU training
parser.add_argument('--num_gpu', type=int, default=1,
help='No. of gpu for training. (0,1) sets up normal training, for CPU or one GPU. '
'MultiGPU training must be an even number larger than 1.')
# Preprocessing params
parser.add_argument('--feature_type', type=str, default='mfcc',
help='Feature extraction method: mfcc or spectrogram.')
parser.add_argument('--mfccs', type=int, default=26,
help='Number of mfcc features per frame to extract.')
parser.add_argument('--mels', type=int, default=40,
help='Number of mels to use in feature extraction.')
# Model params
parser.add_argument('--model_type', type=str, default='brnn',
help='Model to train: brnn, blstm, deep_rnn, deep_lstm, cnn_blstm.')
parser.add_argument('--units', type=int, default=256,
help='Number of hidden nodes.')
parser.add_argument('--dropout', type=float, default=0.2,
help='Set dropout value (0-1).')
parser.add_argument('--layers', type=int, default=1, help='Number of recurrent or deep layers.')
parser.add_argument('--cudnn', action='store_true', help='Whether to use cudnn optimized LSTM')
# Saving and loading model params:
parser.add_argument('--model_save', type=str,
help='Path, where to save model.')
parser.add_argument('--checkpoint', type=int, default=10,
help='No. of epochs before save during training.')
parser.add_argument('--model_load', type=str, default='',
help='Path of existing model to load. If empty creates new model.')
parser.add_argument('--load_multi', action='store_true',
help='Load multi gpu model saved during parallel GPU training.')
# Additional training settings
parser.add_argument('--save_best_val', action='store_true',
help='Save additional version of model if val_loss improves.')
parser.add_argument('--shuffle_indexes', action='store_true',
help='Shuffle batches after each epoch.')
parser.add_argument('--reduce_lr', action='store_true',
help='Reduce the learning rate if model stops improving val_loss.')
parser.add_argument('--early_stopping', action='store_true',
help='Stop the training early if val_loss stops improving.')
args = parser.parse_args()
main(args)