-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathprompt_widget.py
269 lines (207 loc) · 8.65 KB
/
prompt_widget.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import datetime
from typing import Optional, Literal, TypedDict, List, Union
import openai
import streamlit as st
from pydantic import BaseModel
def check_openai_key():
if st.session_state.get("openai_key", None) is None:
st.error(
"""
This exercise will not be loaded as no OpenAI key was found.
Enter your API Key in the box at the top of this page and return here.
""",
icon="🤦♀️",
)
return True
return False
class SimplePromptHistoryItem(BaseModel):
user: str
assistant: Optional[str] = None
date: datetime.datetime = datetime.datetime.now()
def simple_prompt(title, **kwargs):
default_text = kwargs["default_text"] if "default_text" in kwargs else ""
long = kwargs["long"] if "long" in kwargs else True
if check_openai_key():
return
content_key = f"exercise-area-{title}-content"
history_key = f"exercise-area-{title}-history"
if content_key not in st.session_state:
st.session_state[content_key] = []
if history_key not in st.session_state:
st.session_state[history_key] = (
len(st.session_state[content_key])
if len(st.session_state[content_key]) > 0
else 1
)
exercise_container = st.container(border=True)
exercise_container.subheader(f"Exercise: {title}")
with exercise_container.form(key=f"{content_key}-form"):
prompt = st.text_area(
"Prompt",
default_text,
key=f"{content_key}-prompt",
height=500 if long else None,
)
submitted = st.form_submit_button("Submit", type="primary")
if submitted:
st.session_state[content_key].append(SimplePromptHistoryItem(user=prompt))
st.session_state[history_key] = len(st.session_state[content_key])
with exercise_container:
if len(st.session_state[content_key]) > 0:
current_history_item = st.session_state[content_key][
st.session_state[history_key] - 1
]
with st.chat_message("user"):
st.caption(
f"On {current_history_item.date.strftime('%B %d, %Y at %I:%M%p')}"
)
st.write(current_history_item.user)
if current_history_item.assistant:
st.chat_message("assistant").write(current_history_item.assistant)
else:
client = openai.Client(api_key=st.session_state.openai_key)
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
stream=True,
)
response = st.write_stream(stream)
current_history_item.assistant = response
st.session_state[content_key][
st.session_state[history_key] - 1
] = current_history_item
def update_history_key():
st.session_state[history_key] = st.session_state[
f"exercise-area-{title}-slider"
]
if len(st.session_state[content_key]) > 1:
st.slider(
"History",
1,
len(st.session_state[content_key]),
st.session_state[history_key],
key=f"exercise-area-{title}-slider",
on_change=update_history_key,
)
return exercise_container
CHAT_PROMPT_ROLE = Literal["user", "assistant", "system"]
class ChatPromptMessage(TypedDict):
role: CHAT_PROMPT_ROLE
content: str
def chat_prompt(title: str, **kwargs):
history: List[ChatPromptMessage] = kwargs.get("history", [])
steps: Union[List[str]] = kwargs.get("steps", [])
long = kwargs.get("long", False)
if not isinstance(history, list) or not all(
isinstance(item, dict) and "role" in item and "content" in item
for item in history
):
raise TypeError("history must be a list of ChatPromptMessage objects")
if not isinstance(steps, list) or not all(isinstance(item, str) for item in steps):
raise TypeError("steps must be a list of strings")
if check_openai_key():
return
# Initialize
content_key = f"exercise-area-{title}-content"
history_key = f"exercise-area-{title}-history"
steps_key = f"exercise-area-{title}-steps"
if content_key not in st.session_state:
st.session_state[content_key] = []
st.session_state[content_key].append(history)
if history_key not in st.session_state:
st.session_state[history_key] = 1
if steps_key not in st.session_state:
st.session_state[steps_key] = [0]
# Set messages to correct history
messages = st.session_state[content_key][st.session_state[history_key] - 1]
# Create exercise container
exercise_container = st.container(border=True)
exercise_container.subheader(f"Exercise: {title}")
# Produce conversation history in container
conversation = exercise_container.container()
with conversation:
for message in messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Create form area
def get_form_area(prompt=None):
with st.form(key=f"{content_key}-form", clear_on_submit=True):
step_area = st.empty()
prompt = st.text_area(
"Prompt",
prompt if prompt else "",
key=f"{content_key}-prompt",
height=500 if long else None,
)
if (
len(steps) > 0
and st.session_state[steps_key][st.session_state[history_key] - 1] == 0
):
with step_area.container():
st.caption(f"Prompt for this step:")
st.chat_message("user").write(steps[0])
def update_step():
if len(steps) > 0:
step_text = (
steps[
st.session_state[steps_key][
st.session_state[history_key] - 1
]
]
if st.session_state[steps_key][
st.session_state[history_key] - 1
]
< len(steps)
else ""
)
if step_text:
with step_area.container():
st.caption(f"Prompt for this step:")
st.chat_message("user").write(f"{step_text}")
submitted = st.form_submit_button("Submit", type="primary")
if submitted:
messages.append({"role": "user", "content": prompt})
if len(steps) > 0:
st.session_state[steps_key][st.session_state[history_key] - 1] += 1
update_step()
client = openai.Client(api_key=st.session_state.openai_key)
with conversation:
st.chat_message("user").write(prompt)
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
stream=True,
)
response = st.write_stream(stream)
messages.append({"role": "assistant", "content": response})
st.session_state[content_key][
st.session_state[history_key] - 1
] = messages
form_area = exercise_container.empty()
with form_area:
get_form_area()
col1, col2 = exercise_container.columns([1, 5])
with col1:
reset = st.button("Reset", key=f"exercise-area-{title}-reset")
if reset:
st.session_state[content_key].append(history)
st.session_state[history_key] = len(st.session_state[content_key])
st.session_state[steps_key].append(0)
st.rerun()
with col2:
def update_history_key():
st.session_state[history_key] = st.session_state[
f"exercise-area-{title}-slider"
]
st.rerun()
if len(st.session_state[content_key]) > 1:
st.slider(
"History",
1,
len(st.session_state[content_key]),
st.session_state[history_key],
key=f"exercise-area-{title}-slider",
on_change=update_history_key,
)