-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
183 lines (154 loc) · 5.45 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
from torch.utils.data.sampler import SubsetRandomSampler
import torchvision
from torchvision import transforms as T
from network.resnet import *
from learning.lr_scheduler import GradualWarmupScheduler
def get_model(args, shape, num_classes):
model = eval(args.model)(
shape,
num_classes,
checkpoint_dir=args.checkpoint_dir,
checkpoint_name=args.checkpoint_name,
pretrained=args.pretrained,
pretrained_path=args.pretrained_path,
norm=args.norm,
)#.cuda(args.gpu)
return model
def make_optimizer(args, model):
trainable = filter(lambda x: x.requires_grad, model.parameters())
if args.optimizer == 'SGD':
optimizer_function = optim.SGD
kwargs = {'momentum': 0.9}
elif args.optimizer == 'ADAM':
optimizer_function = optim.Adam
kwargs = {
'betas': (0.9, 0.999),
'eps': 1e-08
}
else:
raise NameError('Not Supportes Optimizer')
kwargs['lr'] = args.learning_rate
kwargs['weight_decay'] = args.weight_decay
return optimizer_function(trainable, **kwargs)
def make_scheduler(args, optimizer):
if args.decay_type == 'step':
scheduler = lrs.MultiStepLR(
optimizer,
milestones=[30, 60, 90],
gamma=0.1
)
elif args.decay_type == 'step_warmup':
scheduler = lrs.MultiStepLR(
optimizer,
milestones=[30, 60, 90],
gamma=0.1
)
scheduler = GradualWarmupScheduler(
optimizer,
multiplier=1,
total_epoch=5,
after_scheduler=scheduler
)
elif args.decay_type == 'cosine_warmup':
cosine_scheduler = lrs.CosineAnnealingLR(
optimizer,
T_max=args.epochs
)
scheduler = GradualWarmupScheduler(
optimizer,
multiplier=1,
total_epoch=args.epochs//10,
after_scheduler=cosine_scheduler
)
else:
raise Exception('unknown lr scheduler: {}'.format(args.decay_type))
return scheduler
def make_dataloader(args):
train_trans = T.Compose([
T.Resize((256, 256)),
T.RandomHorizontalFlip(),
T.ToTensor(),
])
valid_trans = T.Compose([
T.Resize((256, 256)),
T.ToTensor(),
])
test_trans = T.Compose([
T.Resize((256, 256)),
T.ToTensor(),
])
trainset = torchvision.datasets.ImageFolder(root="data/seg_train/seg_train", transform=train_trans)
validset = torchvision.datasets.ImageFolder(root="data/seg_train/seg_train", transform=valid_trans)
testset = torchvision.datasets.ImageFolder(root="data/seg_test/seg_test", transform=test_trans)
np.random.seed(args.seed)
targets = trainset.targets
train_idx, valid_idx = train_test_split(np.arange(len(targets)), test_size=0.2, shuffle=True, stratify=targets)
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, sampler=train_sampler, num_workers=args.num_workers
)
valid_loader = torch.utils.data.DataLoader(
validset, batch_size=args.batch_size, sampler=valid_sampler, num_workers=args.num_workers
)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers
)
return train_loader, valid_loader, test_loader
def plot_learning_curves(metrics, cur_epoch, args):
x = np.arange(cur_epoch+1)
fig, ax1 = plt.subplots()
ax1.set_xlabel('epochs')
ax1.set_ylabel('loss')
ln1 = ax1.plot(x, metrics['train_loss'], color='tab:red')
ln2 = ax1.plot(x, metrics['val_loss'], color='tab:red', linestyle='dashed')
ax1.grid()
ax2 = ax1.twinx()
ax2.set_ylabel('accuracy')
ln3 = ax2.plot(x, metrics['train_acc'], color='tab:blue')
ln4 = ax2.plot(x, metrics['val_acc'], color='tab:blue', linestyle='dashed')
lns = ln1+ln2+ln3+ln4
plt.legend(lns, ['Train loss', 'Validation loss', 'Train accuracy','Validation accuracy'])
plt.tight_layout()
plt.savefig('{}/{}/learning_curve.png'.format(args.checkpoint_dir, args.checkpoint_name), bbox_inches='tight')
plt.close('all')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.max = 0
self.min = 1e5
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if val > self.max:
self.max = val
if val < self.min:
self.min = val
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res