-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathNuPACK.py
executable file
·951 lines (683 loc) · 34.8 KB
/
NuPACK.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
#Python wrapper for NUPACK 2.0 by Dirks, Bois, Schaeffer, Winfree, and Pierce (SIAM Review)
#This file is part of the Ribosome Binding Site Calculator.
#The Ribosome Binding Site Calculator is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#The Ribosome Binding Site Calculator is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#You should have received a copy of the GNU General Public License
#along with Ribosome Binding Site Calculator. If not, see <http://www.gnu.org/licenses/>.
#This Python wrapper is written by Howard Salis. Copyright 2008-2009 is owned by the University of California Regents. All rights reserved. :)
#Use at your own risk.
import os.path
import os, popen2, time, random, string
tempdir = "/tmp" + "".join([random.choice(string.digits) for x in range(6)])
current_dir = os.path.dirname(os.path.abspath(__file__)) + tempdir
if not os.path.exists(current_dir): os.mkdir(current_dir)
debug=0
#Class that encapsulates all of the functions from NuPACK 2.0
class NuPACK(dict):
debug_mode = 0
RT = 0.61597 #gas constant times 310 Kelvin (in units of kcal/mol)
def __init__(self,Sequence_List,material):
self.ran = 0
import re
import string
exp = re.compile('[ATGCU]',re.IGNORECASE)
for seq in Sequence_List:
if exp.match(seq) == None:
error_string = "Invalid letters found in inputted sequences. Only ATGCU allowed. \n Sequence is \"" + str(seq) + "\"."
raise ValueError(error_string)
if not material == 'rna' and not material == 'dna' and not material == "rna1999": raise ValueError("The energy model must be specified as either ""dna"", ""rna"", or ""rna1999"" .")
self["sequences"] = Sequence_List
self["material"] = material
random.seed(time.time())
long_id = "".join([random.choice(string.letters + string.digits) for x in range(10)])
self.prefix = current_dir + "/nu_temp_" + long_id
def complexes(self,MaxStrands, Temp = 37.0, ordered = "", pairs = "", mfe = "", degenerate = "", dangles = "some", timeonly = "", quiet="", AdditionalComplexes = []):
"""A wrapper for the complexes command, which calculates the equilibrium probability of the formation of a multi-strand
RNA or DNA complex with a user-defined maximum number of strands. Additional complexes may also be included by the user."""
if Temp <= 0: raise ValueError("The specified temperature must be greater than zero.")
if int(MaxStrands) <= 0: raise ValueError("The maximum number of strands must be greater than zero.")
#Write input files
self._write_input_complexes(MaxStrands, AdditionalComplexes)
#Set arguments
material = self["material"]
if ordered: ordered = " -ordered "
if pairs: pairs = " -pairs "
if mfe: mfe = " -mfe "
if degenerate: degenerate = " -degenerate "
if timeonly: timeonly = " -timeonly "
if quiet: quiet = " -quiet "
dangles = "-dangles " + dangles + " "
#Call NuPACK C programs
cmd = "complexes"
args = " -T " + str(Temp) + " -material " + material + " " + ordered + pairs + mfe + degenerate \
+ dangles + timeonly + quiet + " "
output = popen2.Popen3(cmd + args + self.prefix)
while output.poll() < 0:
try:
output.wait()
time.sleep(0.001)
except:
break
if debug == 1: print output.fromchild.read()
#Read output files
self._read_output_cx()
self._cleanup("cx")
if ordered:
self._read_output_ocx()
self._read_output_ocx_mfe()
self._cleanup("ocx")
self._cleanup("ocx-mfe")
self._cleanup("ocx-key")
self._cleanup("in")
#print "Complex energies and secondary structures calculated."
self.ran = 1
self["program"] = "complexes"
def mfe(self, strands,Temp = 37.0, multi = " -multi", pseudo = "", degenerate = "", dangles = "some"):
self["mfe_composition"] = strands
if Temp <= 0: raise ValueError("The specified temperature must be greater than zero.")
if (multi == 1 and pseudo == 1): raise ValueError("The pseudoknot algorithm does not work with the -multi option.")
#Write input files
self._write_input_mfe(strands)
#Set arguments
material = self["material"]
if multi == "": multi = ""
if pseudo: pseudo = " -pseudo"
if degenerate: degenerate = " -degenerate "
dangles = " -dangles " + dangles + " "
#Call NuPACK C programs
cmd = "mfe"
args = " -T " + str(Temp) + multi + pseudo + " -material " + material + degenerate + dangles + " "
output = popen2.Popen3(cmd + args + self.prefix)
while output.poll() < 0:
try:
output.wait()
time.sleep(0.001)
except:
break
if debug == 1: print output.fromchild.read()
self._read_output_mfe()
self._cleanup("mfe")
self._cleanup("in")
self["program"] = "mfe"
#print "Minimum free energy secondary structure has been calculated."
def subopt(self, strands,energy_gap,Temp = 37.0, multi = " -multi", pseudo = "", degenerate = "", dangles = "some"):
self["subopt_composition"] = strands
if Temp <= 0: raise ValueError("The specified temperature must be greater than zero.")
if (multi == 1 and pseudo == 1): raise ValueError("The pseudoknot algorithm does not work with the -multi option.")
#Write input files
self._write_input_subopt(strands,energy_gap)
#Set arguments
material = self["material"]
if multi == "": multi = ""
if pseudo: pseudo = " -pseudo"
if degenerate: degenerate = " -degenerate "
dangles = " -dangles " + dangles + " "
#Call NuPACK C programs
cmd = "subopt"
args = " -T " + str(Temp) + multi + pseudo + " -material " + material + degenerate + dangles + " "
output = popen2.Popen3(cmd + args + self.prefix)
while output.poll() < 0:
try:
output.wait()
time.sleep(0.001)
except:
break
if debug == 1: print output.fromchild.read()
self._read_output_subopt()
self._cleanup("subopt")
self._cleanup("in")
self["program"] = "subopt"
#print "Minimum free energy and suboptimal secondary structures have been calculated."
def energy(self, strands, base_pairing_x, base_pairing_y, Temp = 37.0, multi = " -multi", pseudo = "", degenerate = "", dangles = "some"):
self["energy_composition"] = strands
if Temp <= 0: raise ValueError("The specified temperature must be greater than zero.")
if (multi == 1 and pseudo == 1): raise ValueError("The pseudoknot algorithm does not work with the -multi option.")
#Write input files
self._write_input_energy(strands,base_pairing_x,base_pairing_y)
#Set arguments
material = self["material"]
if multi == "": multi = ""
if pseudo: pseudo = " -pseudo"
if degenerate: degenerate = " -degenerate "
dangles = " -dangles " + dangles + " "
#Call NuPACK C programs
cmd = "energy"
args = " -T " + str(Temp) + multi + pseudo + " -material " + material + degenerate + dangles + " "
output = popen2.Popen3(cmd + args + self.prefix)
while output.poll() < 0:
try:
output.wait()
time.sleep(0.001)
except:
break
#if debug == 1: print output.fromchild.read()
self["energy_energy"] = []
#Skip the comments of the text file
line = output.fromchild.readline()
while line[0]=="%":
line = output.fromchild.readline()
energy = float(line)
self["program"] = "energy"
self["energy_energy"].append(energy)
self["energy_basepairing_x"] = [base_pairing_x]
self["energy_basepairing_y"] = [base_pairing_y]
self._cleanup("in")
return energy
def pfunc(self, strands, Temp = 37.0, multi = " -multi", pseudo = "", degenerate = "", dangles = "some"):
self["pfunc_composition"] = strands
if Temp <= 0: raise ValueError("The specified temperature must be greater than zero.")
if (multi == 1 and pseudo == 1): raise ValueError("The pseudoknot algorithm does not work with the -multi option.")
#Write input files
#Input for pfunc is the same as mfe
self._write_input_mfe(strands)
#Set arguments
material = self["material"]
if multi == "": multi = ""
if pseudo: pseudo = " -pseudo"
if degenerate: degenerate = " -degenerate "
dangles = " -dangles " + dangles + " "
#Call NuPACK C programs
cmd = "pfunc"
args = " -T " + str(Temp) + multi + pseudo + " -material " + material + degenerate + dangles + " "
output = popen2.Popen3(cmd + args + self.prefix)
while output.poll() < 0:
try:
output.wait()
time.sleep(0.001)
except:
break
#if debug == 1: print output.fromchild.read()
#Skip the comments of the text file
line = output.fromchild.readline()
words = line.split(" ")
while line[0]=="%" or words[0] == "Attempting":
line = output.fromchild.readline()
words = line.split(" ")
energy = float(line)
line = output.fromchild.readline()
partition_function = float(line)
self["program"] = "pfunc"
self["pfunc_energy"] = energy
self["pfunc_partition_function"] = partition_function
self._cleanup("in")
return partition_function
def count(self, strands, Temp = 37.0, multi = " -multi", pseudo = "", degenerate = "", dangles = "some"):
self["count_composition"] = strands
if (multi == 1 and pseudo == 1): raise ValueError("The pseudoknot algorithm does not work with the -multi option.")
#Write input files
#Input for count is the same as mfe
self._write_input_mfe(strands)
#Set arguments
material = self["material"]
if multi == "": multi = ""
if pseudo: pseudo = " -pseudo"
if degenerate: degenerate = " -degenerate "
dangles = " -dangles " + dangles + " "
#Call NuPACK C programs
cmd = "count"
args = " -T " + str(Temp) + multi + pseudo + " -material " + material + degenerate + dangles + " "
output = popen2.Popen3(cmd + args + self.prefix)
while output.poll() < 0:
try:
output.wait()
time.sleep(0.001)
except:
break
#if debug == 1: print output.fromchild.read()
#Skip the comments of the text file
line = output.fromchild.readline()
words = line.split(" ")
while line[0]=="%" or words[0] == "Attempting":
line = output.fromchild.readline()
words = line.split(" ")
number = float(line)
self["program"] = "count"
self["count_number"] = number
self._cleanup("in")
return number
def _write_input_energy(self,strands,base_pairing_x,base_pairing_y):
#Creates the input file for energy NUPACK functions
#strands is a list containing the number of each strand in the complex (assumes -multi flag is used)
#base_pairing_x and base_pairing_y is a list of base pairings of the strands s.t. #x < #y are base paired
NumStrands = len(self["sequences"])
input_str = str(NumStrands) + "\n"
for seq in self["sequences"]:
input_str = input_str + seq + "\n"
NumEachStrands = ""
for num in strands:
NumEachStrands = NumEachStrands + str(num) + " "
input_str = input_str + NumEachStrands + "\n"
for pos in range(len(base_pairing_x)):
input_str = input_str + str(base_pairing_x[pos]) + "\t" + str(base_pairing_y[pos]) + "\n"
handle = open(self.prefix + ".in", "w")
handle.writelines(input_str)
handle.close()
def _write_input_subopt(self,strands,energy_gap):
#Creates the input file for mfe and subopt NUPACK functions
#strands is a list containing the number of each strand in the complex (assumes -multi flag is used)
NumStrands = len(self["sequences"])
input_str = str(NumStrands) + "\n"
for seq in self["sequences"]:
input_str = input_str + seq + "\n"
NumEachStrands = ""
for num in strands:
NumEachStrands = NumEachStrands + str(num) + " "
input_str = input_str + NumEachStrands + "\n"
input_str = input_str + str(energy_gap) + "\n"
handle = open(self.prefix + ".in", "w")
handle.writelines(input_str)
handle.close()
def _write_input_mfe(self,strands):
#Creates the input file for mfe and subopt NUPACK functions
#strands is a list containing the number of each strand in the complex (assumes -multi flag is used)
NumStrands = len(self["sequences"])
input_str = str(NumStrands) + "\n"
for seq in self["sequences"]:
input_str = input_str + seq + "\n"
NumEachStrands = ""
for num in strands:
NumEachStrands = NumEachStrands + str(num) + " "
input_str = input_str + NumEachStrands + "\n"
handle = open(self.prefix + ".in", "w")
handle.writelines(input_str)
handle.close()
def _write_input_complexes(self, MaxStrands, AdditionalComplexes = [] ):
#First, create the input string for file.in to send into NUPACK
NumStrands = len(self["sequences"])
input_str = str(NumStrands) + "\n"
for seq in self["sequences"]:
input_str = input_str + seq + "\n"
input_str = input_str + str(MaxStrands) + "\n"
handle = open(self.prefix + ".in", "w")
handle.writelines(input_str)
handle.close()
if len(AdditionalComplexes) > 0:
#The user may also specify additional complexes composed of more than MaxStrands strands. Create the input string detailing this.
counter=0
counts = [[]]
added=[]
for (complexes,i) in zip(AdditionalComplexes,range(len(AdditionalComplexes))):
if len(complexes) <= MaxStrands: #Remove complexes if they have less than MaxStrands strands.
AdditionalComplexes.pop(i)
else:
counts.append([])
added.append(0)
for j in range(NumStrands): #Count the number of each unique strand in each complex and save it to counts
counts[counter].append(complexes.count(j+1))
counter += 1
list_str = ""
for i in range(len(counts)-1):
if added[i] == 0:
list_str = list_str + "C " + " ".join([str(count) for count in counts[i]]) + "\n"
list_str = list_str + " ".join([str(strand) for strand in AdditionalComplexes[i]]) + "\n"
added[i] = 1
for j in range(i+1,len(counts)-1):
if counts[i] == counts[j] and added[j] == 0:
list_str = list_str + " ".join([str(strand) for strand in AdditionalComplexes[j]]) + "\n"
added[j]=1
handle = open(self.prefix + ".list", "w")
handle.writelines(list_str)
handle.close()
def _read_output_cx(self):
#Read the prefix.cx output text file generated by NuPACK and write its data to instanced attributes
#Output: energies of unordered complexes in key "unordered_energies"
#Output: strand composition of unordered complexes in key "unordered_complexes"
handle = open(self.prefix+".cx", "rU")
line = handle.readline()
#Read some useful data from the comments of the text file
while line[0]=="%":
words=line.split()
if len(words) > 7 and words[1] == "Number" and words[2] == "of" and words[3] == "complexes" and words[4] == "from" and words[5] == "enumeration:":
self["numcomplexes"] =int(words[6])
elif len(words) > 8 and words[1] == "Total" and words[2] == "number" and words[3] == "of" and words[4] =="permutations" and words[5] == "to" and words[6] == "calculate:":
self["num_permutations"] = int(words[7])
line = handle.readline()
self["unordered_energies"] = []
self["unordered_complexes"] = []
self["unordered_composition"] = []
while line:
words=line.split()
if not words[0] == "%":
complex = words[0]
strand_compos = [int(f) for f in words[1:len(words)-1]]
energy = float(words[len(words)-1])
self["unordered_complexes"].append(complex)
self["unordered_energies"].append(energy)
self["unordered_composition"].append(strand_compos)
line = handle.readline()
handle.close()
def _read_output_ocx(self):
#Read the prefix.ocx output text file generated by NuPACK and write its data to instanced attributes
#Output: energies of ordered complexes in key "ordered_energies"
#Output: number of permutations and strand composition of ordered complexes in key "ordered_complexes"
handle = open(self.prefix+".ocx", "rU")
line = handle.readline()
#Read some useful data from the comments of the text file
while line[0]=="%":
words=line.split()
if len(words) > 7 and words[1] == "Number" and words[2] == "of" and words[3] == "complexes" and words[4] == "from" and words[5] == "enumeration:":
self["numcomplexes"] =int(words[6])
elif len(words) > 8 and words[1] == "Total" and words[2] == "number" and words[3] == "of" and words[4] =="permutations" and words[5] == "to" and words[6] == "calculate:":
self["num_permutations"] = int(words[7])
line = handle.readline()
self["ordered_complexes"] = []
self["ordered_energies"] = []
self["ordered_permutations"] = []
self["ordered_composition"] = []
while line:
words=line.split()
if not words[0] == "%":
complex = words[0]
permutations = words[1]
strand_compos = [int(f) for f in words[2:len(words)-1]]
energy = float(words[len(words)-1])
self["ordered_complexes"].append(complex)
self["ordered_permutations"].append(permutations)
self["ordered_energies"].append(energy)
self["ordered_composition"].append(strand_compos)
line = handle.readline()
handle.close()
def _read_output_ocx_mfe(self):
#Read the prefix.ocx output text file generated by NuPACK and write its data to instanced attributes
#Output: energy of mfe of each complex in key "ordered_energy"
#Make sure that the ocx file has already been read.
if not (self.has_key("ordered_complexes") and self.has_key("ordered_permutations") and self.has_key("ordered_energies") and self.has_key("ordered_composition")):
self._read_output_ocx(self,prefix)
handle = open(self.prefix+".ocx-mfe", "rU")
#Skip the comments of the text file
line = handle.readline()
while line[0]=="%":
line = handle.readline()
self["ordered_basepairing_x"] = []
self["ordered_basepairing_y"] = []
self["ordered_energy"] = []
self["ordered_totalnt"]=[]
while line:
words=line.split()
if not line == "\n" and not words[0] == "%" and not words[0] == "":
#Read the line containing the number of total nucleotides in the complex
totalnt = words[0]
self["ordered_totalnt"].append(totalnt)
#Read the line containing the mfe
words = handle.readline().split()
mfe = float(words[0])
self["ordered_energy"].append(mfe)
#Skip the line containing the dot/parens description of the secondary structure
line = handle.readline()
#Read in the lines containing the base pairing description of the secondary structure
#Continue reading until a % comment
bp_x = []
bp_y = []
line = handle.readline()
words = line.split()
while not line == "\n" and not words[0] == "%":
bp_x.append(int(words[0]))
bp_y.append(int(words[1]))
words = handle.readline().split()
self["ordered_basepairing_x"].append(bp_x)
self["ordered_basepairing_y"].append(bp_y)
line = handle.readline()
handle.close()
def _read_output_mfe(self):
#Read the prefix.mfe output text file generated by NuPACK and write its data to instanced attributes
#Output: total sequence length and minimum free energy
#Output: list of base pairings describing the secondary structure
handle = open(self.prefix+".mfe", "rU")
#Skip the comments of the text file
line = handle.readline()
while line[0]=="%":
line = handle.readline()
self["mfe_basepairing_x"] = []
self["mfe_basepairing_y"] = []
self["mfe_energy"] = []
self["totalnt"]=[]
counter = 0
while line:
words=line.split()
if not line == "\n" and not words[0] == "%" and not words[0] == "":
#Read the line containing the number of total nucleotides in the complex
totalnt = words[0]
self["totalnt"].append(totalnt)
counter += 1
#Read the line containing the mfe
words = handle.readline().split()
mfe = float(words[0])
self["mfe_energy"].append(mfe)
#Skip the line containing the dot/parens description of the secondary structure
line = handle.readline()
#Read in the lines containing the base pairing description of the secondary structure
#Continue reading until a % comment
bp_x = []
bp_y = []
line = handle.readline()
words = line.split()
while not line == "\n" and not words[0] == "%":
bp_x.append(int(words[0]))
bp_y.append(int(words[1]))
words = handle.readline().split()
self["mfe_basepairing_x"].append(bp_x)
self["mfe_basepairing_y"].append(bp_y)
line = handle.readline()
handle.close()
self["mfe_NumStructs"] = counter
def _read_output_subopt(self):
#Read the prefix.subopt output text file generated by NuPACK and write its data to instanced attributes
#Output: total sequence length and minimum free energy
#Output: list of base pairings describing the secondary structure
handle = open(self.prefix+".subopt", "rU")
#Skip the comments of the text file
line = handle.readline()
while line[0]=="%":
line = handle.readline()
self["subopt_basepairing_x"] = []
self["subopt_basepairing_y"] = []
self["subopt_energy"] = []
self["totalnt"]=[]
counter=0
while line:
words=line.split()
if not line == "\n" and not words[0] == "%" and not words[0] == "":
#Read the line containing the number of total nucleotides in the complex
totalnt = words[0]
self["totalnt"].append(totalnt)
counter += 1
#Read the line containing the mfe
words = handle.readline().split()
mfe = float(words[0])
self["subopt_energy"].append(mfe)
#Skip the line containing the dot/parens description of the secondary structure
line = handle.readline()
#Read in the lines containing the base pairing description of the secondary structure
#Continue reading until a % comment
bp_x = []
bp_y = []
line = handle.readline()
words = line.split()
while not line == "\n" and not words[0] == "%":
bp_x.append(int(words[0]))
bp_y.append(int(words[1]))
words = handle.readline().split()
self["subopt_basepairing_x"].append(bp_x)
self["subopt_basepairing_y"].append(bp_y)
line = handle.readline()
handle.close()
self["subopt_NumStructs"] = counter
def _cleanup(self,suffix):
if os.path.exists(self.prefix+"."+suffix): os.remove(self.prefix+"."+suffix)
return
def export_PDF(self, complex_ID, name = "", filename = "temp.pdf", program = None):
"""Uses Zuker's sir_graph_ng and ps2pdf.exe to convert a secondary structure described in .ct format
to a PDF of the RNA"""
if program is None:
program = self["program"]
inputfile = "temp.ct"
self.Convert_to_ct(complex_ID,name,inputfile,program)
cmd = "sir_graph_ng" #Assumes it's on the path
args = "-p" #to PostScript file
output = popen2.Popen3(cmd + " " + args + " " + inputfile,"r")
output.wait()
if debug == 1: print output.fromchild.read()
inputfile = inputfile[0:len(inputfile)-2] + "ps"
cmd = "ps2pdf" #Assumes it's on the path
output = popen2.Popen3(cmd + " " + inputfile,"r")
output.wait()
if debug == 1: print output.fromchild.read()
outputfile = inputfile[0:len(inputfile)-2] + "pdf"
#Remove the temporary file "temp.ct" if it exists
if os.path.exists("temp.ct"): os.remove("temp.ct")
#Remove the temporary Postscript file if it exists
if os.path.exists(inputfile): os.remove(inputfile)
#Rename the output file to the desired filename.
if os.path.exists(outputfile): os.rename(outputfile,filename)
#Done!
def Convert_to_ct(self,complex_ID,name,filename = "temp.ct",program = "ordered"):
"""Converts the secondary structure of a single complex into the .ct file format, which is used
with sir_graph_ng (or other programs) to create an image of the secondary structure."""
#hacksy way of reading from data produced by 'complex', by 'mfe', or by 'subopt'
data_x = program + "_basepairing_x"
data_y = program + "_basepairing_y"
mfe_name = program + "_energy"
composition_name = program + "_composition"
#Format of .ct file
#Header: <Total # nt> \t dG = <# mfe> kcal/mol \t <name of sequence>
#The Rest:
#<nt num> \t <bp letter> \t <3' neighbor> \t <5' neighbor> \t <# of bp'ing, 0 if none> \t ...
#<strand-specific nt num> \t <3' neighbor if connected by helix> \t <5' neighbor if connected by helix>
#Extract the data for the desired complex using complex_ID
bp_x = self[data_x][complex_ID]
bp_y = self[data_y][complex_ID]
mfe = self[mfe_name][complex_ID]
if program == "mfe" or program == "subopt" or program == "energy":
composition = self[composition_name]
elif program == "ordered" or program == "unordered":
composition = self[composition_name][complex_ID]
#Determine concatenated sequence of all strands, their beginnings, and ends
allseq = ""
strand_begins = []
strand_ends = []
#Seemingly, the format of the composition is different for the program complex vs. mfe/subopt
#for mfe/subopt, the composition is the list of strand ids
#for complex, it is the number of each strand (in strand id order) in the complex
#for mfe/subopt, '1 2 2 3' refers to 1 strand of 1, 2 strands of 2, and 1 strand of 3.
#for complex, '1 2 2 3' refers to 1 strand of 1, 2 strands of 2, 2 strands of 3, and 3 strands of 4'.
#what a mess.
if program == "mfe" or program == "subopt" or program == "energy":
for strand_id in composition:
strand_begins.append(len(allseq) + 1)
allseq = allseq + self["sequences"][strand_id-1]
strand_ends.append(len(allseq))
else:
for (num_strands,strand_id) in zip(composition,range(len(composition))):
for j in range(num_strands):
strand_begins.append(len(allseq) + 1)
allseq = allseq + self["sequences"][strand_id]
strand_ends.append(len(allseq))
seq_len = len(allseq)
#print "Seq Len = ", seq_len, " Composition = ", composition
#print "Sequence = ", allseq
#print "Base pairing (x) = ", bp_x
#print "Base pairing (y) = ", bp_y
#Create the header
header = str(seq_len) + "\t" + "dG = " + str(mfe) + " kcal/mol" + "\t" + name + "\n"
#Open the file
handle = open(filename,"w")
#Write the header
handle.write(header)
#Write a line for each nt in the secondary structure
for i in range(1,seq_len+1):
for (nt,pos) in zip(strand_begins,range(len(strand_begins))):
if i >= nt:
strand_id = pos
#Determine 3' and 5' neighbor
#If this is the beginning of a strand, then the 3' neighbor is 0
#If this is the end of a strand, then the 5' neighbor is 0
if i in strand_begins:
nb_5p = 0
else:
nb_5p = i - 1
if i in strand_ends:
nb_3p = 0
else:
nb_3p = i + 1
if i in bp_x or i in bp_y:
if i in bp_x: nt_bp = bp_y[bp_x.index(i)]
if i in bp_y: nt_bp = bp_x[bp_y.index(i)]
else:
nt_bp = 0
#Determine strand-specific counter
strand_counter = i - strand_begins[strand_id] + 1
#Determine the 3' and 5' neighbor helical connectivity
#If the ith nt is connected to its 3', 5' neighbor by a helix, then include it
#Otherwise, 0
#Helix connectivity conditions:
#The 5' or 3' neighbor is connected via a helix iff:
#a) helix start: i not bp'd, i+1 bp'd, bp_id(i+1) - 1 is bp'd, bp_id(i+1) + 1 is not bp'd
#b) helix end: i not bp'd, i-1 bp'd, bp_id(i-1) - 1 is not bp'd, bp_id(i-1) + 1 is bp'd
#c) helix continued: i and bp_id(i)+1 is bp'd, 5' helix connection is bp_id(bp_id(i)+1)
#d) helix continued: i and bp_id(i)-1 is bp'd, 3' helix connection is bp_id(bp_id(i)-1)
#Otherwise, zero.
#Init
hc_5p = 0
hc_3p = 0
if i in bp_x or i in bp_y: #helix continued condition (c,d)
if i in bp_x: bp_i = bp_y[bp_x.index(i)]
if i in bp_y: bp_i = bp_x[bp_y.index(i)]
if bp_i+1 in bp_x or bp_i+1 in bp_y: #helix condition c
if bp_i+1 in bp_x: hc_3p = bp_y[bp_x.index(bp_i+1)]
if bp_i+1 in bp_y: hc_3p = bp_x[bp_y.index(bp_i+1)]
if bp_i-1 in bp_x or bp_i-1 in bp_y: #helix condition d
if bp_i-1 in bp_x: hc_5p = bp_y[bp_x.index(bp_i-1)]
if bp_i-1 in bp_y: hc_5p = bp_x[bp_y.index(bp_i-1)]
else: #helix start or end (a,b)
if i+1 in bp_x or i+1 in bp_y: #Start, condition a
if i+1 in bp_x: bp_3p = bp_y[bp_x.index(i+1)]
if i+1 in bp_y: bp_3p = bp_x[bp_y.index(i+1)]
if bp_3p + 1 not in bp_x and bp_3p + 1 not in bp_y:
hc_3p = i + 1
if i-1 in bp_x or i-1 in bp_y: #End, condition b
if i-1 in bp_x: bp_5p = bp_y[bp_x.index(i-1)]
if i-1 in bp_y: bp_5p = bp_x[bp_y.index(i-1)]
if bp_5p - 1 not in bp_x and bp_5p - 1 not in bp_y:
hc_5p = i - 1
line = str(i) + "\t" + allseq[i-1] + "\t" + str(nb_5p) + "\t" + str(nb_3p) + "\t" + str(nt_bp) + "\t" + str(strand_counter) + "\t" + str(hc_5p) + "\t" + str(hc_3p) + "\n"
handle.write(line)
#Close the file. Done.
handle.close()
if __name__ == "__main__":
import re
#sequences = ["AAGATTAACTTAAAAGGAAGGCCCCCCATGCGATCAGCATCAGCACTACGACTACGCGA","acctcctta","ACGTTGGCCTTCC"]
sequences = ["AAGATTAACTTAAAAGGAAGGCCCCCCATGCGATCAGCATCAGCACTACGACTACGCGA"]
#Complexes
#Input: Max number of strands in a complex. Considers all possible combinations of strands, up to max #.
#'mfe': calculate mfe? 'ordered': consider ordered or unordered complexes?
#Other options available (see function)
AddComplexes = []
test = NuPACK(sequences,"rna1999")
test.complexes(3,mfe = 1, ordered=1)
print test
strand_compositions = test["ordered_composition"]
num_complexes = len(strand_compositions)
num_strands = len(sequences)
for counter in range(num_complexes):
output = "Complex #" + str(counter+1) + " composition: ("
for strand_id in strand_compositions[counter][0:num_strands-1]:
output = output + str(strand_id) + ", "
output = output + str(strand_compositions[counter][num_strands-1]) + ")"
output = output + " dG (RT ln Q): " + str(test["ordered_energy"][counter]) + " kcal/mol"
output = output + " # Permutations: " + str(test["ordered_permutations"][counter])
print output
test.export_PDF(counter, name = "Complex #" + str(counter+1), filename = "Complex_" + str(counter) + ".pdf", program = "ordered")
#Mfe
#Input: Number of each strand in complex.
#Options include RNA/DNA model, temperature, dangles, etc. (See function).
#Example: If there are 3 unique strands (1, 2, 3), then [1, 2, 3] is one of each strand and [1, 1, 2, 2, 3, 3] is two of each strand.
#test.mfe([1, 2], dangles = "all")
#num_complexes = test["mfe_NumStructs"] #Number of degenerate complexes (same energy)
#dG_mfe = test["mfe_energy"]
#print "There are ", num_complexes, " configuration(s) with a minimum free energy of ", dG_mfe, " kcal/mol."