-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlangevin_IG_noupdate.py
123 lines (98 loc) · 3.59 KB
/
langevin_IG_noupdate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import langevin_cached_model as lcm
import pandas as pd
import numpy as np
import argparse
import lmfit as lm
from scipy.stats import gamma
def mygamma(x,alpha, beta):
return gamma.pdf(x,alpha, scale=1/beta)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dir', action='store', default="./",
help='data directory')
parser.add_argument('-f', '--datafile', action='store', default="data.csv",
help='data filename')
parser.add_argument('-n', '--datasets', action='store', type=int, default=100,
help='number of datasets')
parser.add_argument('-t', '--timestep', action='store', type=float, default=0.01,
help='timestep')
parser.add_argument('-s', '--samples', action='store', type=int, default=10000,
help='MCMC samples per run')
arg = parser.parse_args()
data_dir=arg.dir
data_file=arg.datafile
N=arg.datasets
delta_t=arg.timestep
data=pd.read_csv(data_dir+data_file)
data_length=len(data)
# initial prior
# D has mean 1 and std 10
# A has mean 1 and std 10
alpha_A=0.01
beta_A=0.01
alpha_D=2.01
beta_D=1.01
#lists for data storage
mA,sA,mD,sD = [alpha_A/beta_A],[np.sqrt(alpha_A/beta_A**2)],[beta_D/(alpha_D-1.0)],[np.sqrt(beta_D**2/(alpha_D-1.0)**2/(alpha_D-2.0))]
aA,bA,aD,bD = [alpha_A],[beta_A],[alpha_D],[beta_D]
gModel = lm.Model(mygamma)
# compile model for reuse
sm = lcm.LangevinIG()
sm.samples=arg.samples
for i in range(int(data_length/N)):
x=data[i*N : (i+1)*N]
trace = sm.run(x=x,
aD=alpha_D,
bD=beta_D,
aA=alpha_A,
bA=beta_A,
delta_t=delta_t,
N=N)
A = trace['A']
D = trace['D']
# save the data
tracedict = {}
tracedict['D'] = D
tracedict['A'] = A
tdf = pd.DataFrame(tracedict)
tdf.to_csv(data_dir + 'trace_IGnu_G'+str(N)+'_'+ str(i) + '.csv', index=False)
mean_D=D.mean()
std_D=D.std()
mD.append(mean_D)
sD.append(std_D)
print('mean_D: ',mean_D,'std_D: ',std_D)
# alpha_D = (mean_D ** 2 / std_D ** 2) + 2
# beta_D = mean_D * (alpha_D - 1)
aD.append((mean_D ** 2 / std_D ** 2) + 2)
bD.append(mean_D * (alpha_D - 1))
mean_A=A.mean()
std_A=A.std()
mA.append(mean_A)
sA.append(std_A)
print('mean_A: ',mean_A,'std_A: ',std_A)
# alpha_A = (mean_A ** 2 / std_A ** 2)
# beta_A = alpha_A/mean_A
# hist, bin_edges = np.histogram(A, bins='auto', density=True)
# delta = bin_edges[1] - bin_edges[0]
# x = bin_edges[:-1] + delta / 2
#
# result = gModel.fit(hist, x=x, alpha=alpha_A, beta=beta_A)
# print(result.fit_report())
#
#alpha_A = result.best_values['alpha']
#beta_A = result.best_values['beta']
aA.append((mean_A ** 2 / std_A ** 2))
bA.append(alpha_A/mean_A)
resultdict={ 'mean_A' : np.array(mA),
'std_A' : np.array(sA),
'mean_D' : np.array(mD),
'std_D' : np.array(sD),
'alpha_A' : np.array(aA),
'beta_A' : np.array(bA),
'alpha_D' : np.array(aD),
'beta_D' : np.array(bD),
}
df=pd.DataFrame(resultdict)
df.to_csv(data_dir+'resultsIGnu_G'+str(N)+'.csv',index=False)
if __name__ == "__main__":
main()