-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlangevin_fitting_distribution.py
169 lines (142 loc) · 4.77 KB
/
langevin_fitting_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# here we simulate a brownian particle in a harmonic potential
# the question is: if you only have access to a short time sequence
# how accurately can you say something about the parameters of the system
# Ultimately, we would like to compare Bayesian methods and standard
# approaches, such as the analysis of correlation functions
#
# it looks that calculating correlation functions does not give correct amplitudes
# decay times when the observed time sequence is shorter than a few relaxation times
#
import numpy as np
import matplotlib.pyplot as plt, seaborn as sns
import lmfit as lm
from scipy import signal
from lmfit.models import ExponentialModel
import pandas as pd
from itertools import accumulate
import langevin
A,D = 1.0,1.0
delta_t=0.01
N=1000
M=10000
t_list=[]
tstd_list=[]
A_list=[]
Astd_list=[]
mean_list=[]
std_list=[]
mod = ExponentialModel()
acf_avg=np.zeros(int(N/2))
acf_var=np.zeros(int(N/2))
for i in range(M):
# random force
w=np.random.normal(0,1,N)
x = langevin.time_series(A=A,D=D,delta_t=delta_t,N=N)
# see http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.signal.fftconvolve.html
# autocorr = signal.fftconvolve(x, x[::-1], mode='full')
f = np.fft.rfft(x)
acf = np.fft.irfft(f * np.conjugate(f))
acf = np.fft.fftshift(acf) / N
autocorr=acf[int(N/2):]
# n=len(autocorr)
# autocorr=autocorr[int((n-1)/2):]*2.0/(n+1)
acf_avg=acf_avg+autocorr
acf_var=acf_var+autocorr**2
y = autocorr[:min(int(N/2),1000)]
t = np.arange(min(int(N/2),1000))
out = mod.fit(y, amplitude=1.0, decay=100.0, x=t)
#print(out.fit_report(min_correl=0.25))
t_list.append(out.values['decay'])
tstd_list.append(out.covar[0,0])
A_list.append(out.values['amplitude'])
Astd_list.append(out.covar[1,1])
mean_list.append(x.mean())
std_list.append(x.std())
print('mean: ',x.mean(),'std: ',x.std(),'amplitude: ',out.values['amplitude'],'decay: ',out.values['decay'])
acf_avg=acf_avg/M
acf_stderr=np.sqrt((acf_var/M-(acf_avg/M)**2)/M)
y = acf_avg
dy=acf_stderr
t = np.arange(int(N/2))
out = mod.fit(y, amplitude=1.0, decay=100.0, x=t, weights=1./dy)
print(out.fit_report(min_correl=0.25))
print('covar[0,0]: ',out.covar[0,0],'covar[1,1]: ',out.covar[1,1])
plt.figure()
plt.errorbar(t,y,yerr=dy,fmt="ob")
plt.plot(t,out.best_fit)
plt.title('acf')
plt.figure()
plt.plot(t,dy)
plt.title('acf stddev')
t_list=np.array(t_list)
A_list=np.array(A_list)
tstd_list=np.array(tstd_list)
Astd_list=np.array(Astd_list)
mean_list=np.array(mean_list)
std_list=np.array(std_list)
#eliminate outliers e.g. negative decay and very long decay
t_list_pos=t_list[np.logical_and(t_list>=0,t_list<1000)]
A_list_pos=A_list[np.logical_and(t_list>=0,t_list<1000)]
tstd_list_pos=np.sqrt(tstd_list[np.logical_and(t_list>=0,t_list<1000)])
Astd_list_pos=np.sqrt(Astd_list[np.logical_and(t_list>=0,t_list<1000)])
mean_list_pos=mean_list[np.logical_and(t_list>=0,t_list<1000)]
std_list_pos=std_list[np.logical_and(t_list>=0,t_list<1000)]
# careful, I am overwriting gamma
from scipy.stats import gamma
# calculate diffusion coefficient from tau and amplitude
D=A_list_pos/t_list_pos/delta_t
D=D[np.logical_and(D>=0,D<1000)] # remove outliers
mean_D=D.mean()
std_D=D.std()
print('D mean: ',mean_D,'std: ',std_D)
scale_D=std_D**2/mean_D
alpha_D=mean_D/scale_D
print('D alpha: ',alpha_D,'scale: ',scale_D)
xgt=np.linspace(0,D.max(),200)
g_tau=gamma.pdf(xgt,alpha_D,scale=scale_D)
mean_t=t_list_pos.mean()
std_t=t_list_pos.std()
print('tau mean: ',mean_t,'std: ',std_t)
scale_t=std_t**2/mean_t
alpha_t=mean_t/scale_t
print('tau alpha: ',alpha_t,'scale: ',scale_t)
xgt=np.linspace(0,t_list_pos.max(),200)
g_tau=gamma.pdf(xgt,alpha_t,scale=scale_t)
mean_A=A_list_pos.mean()
std_A=A_list_pos.std()
print('ampl mean: ',mean_A,'std: ',std_A)
scale_A=std_A**2/mean_A
alpha_A=mean_A/scale_A
print('ampl alpha: ',alpha_A,'scale: ',scale_A)
xgA=np.linspace(0,A_list_pos.max(),200)
g_A=gamma.pdf(xgA,alpha_A,scale=scale_A)
plt.figure()
plt.title('D histogramm')
plt.hist(D,bins='auto',normed=1)
plt.figure()
plt.title('tau histogramm')
plt.hist(t_list_pos,bins='auto', normed=True)
plt.plot(xgt,g_tau)
plt.figure()
plt.title('amplitude histogramm')
plt.hist(A_list_pos,bins='auto', normed=True)
plt.plot(xgA,g_A)
plt.figure()
plt.title('tau std histogramm')
plt.hist(tstd_list_pos, bins='auto', normed=True)
plt.figure()
plt.title('amplitude std histogramm')
plt.hist(Astd_list_pos,bins='auto',normed=1)
plt.show()
datadict=dict(t=t_list,
t_std=tstd_list,
A=A_list,
A_std=Astd_list,
mean=mean_list,
std=std_list)
df=pd.DataFrame(datadict)
df.to_csv(str(N)+'x'+str(M)+'.csv',index=False)
acf_dict=dict(acf=acf_avg,
acf_stderr=acf_stderr)
df=pd.DataFrame(acf_dict)
df.to_csv('acf_'+str(N)+'x'+str(M)+'.csv',index=False)